
www.manaraa.com

Software & Systems Modeling (2020) 19:231–260
https://doi.org/10.1007/s10270-019-00738-9

REGULAR PAPER

Heterogeneous megamodel management using collection operators

Rick Salay1 · Sahar Kokaly2 · Alessio Di Sandro1 · Nick L. S. Fung1 ·Marsha Chechik1

Received: 11 June 2018 / Revised: 11 March 2019 / Accepted: 28 May 2019 / Published online: 22 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Modelmanagement techniques help tame the complexity caused by themanymodels used in large-scale software development;
however, these techniques have focused on operators to manipulate individual models rather than entire collections of them.
In this work, we begin to address this gap by adapting the widely used map, reduce and filter collection operators for
collections of models represented by megamodels. Key parts of this adaptation include the special handling of relationships
between models and the use of polymorphism to support heterogeneous model collections. We evaluate the complexity of our
operators analytically and demonstrate their applicability on six diverse megamodel management scenarios. We describe our
tool support for the approach and evaluate its scalability experimentally as well as its applicability on a practical application
from the automotive domain.

Keywords Megamodel · Model management · Heterogeneous

1 Introduction

Large-scale software development often uses heterogeneous
collections of related models; however, such collections cre-
ate accidental complexity that must be managed. The field
of Model Management [1] has emerged to address this chal-
lenge. Model management focuses on a high-level view in
which entire models and their relationships (i.e., mappings
between models) can be manipulated using specialized oper-
ators to achieveuseful outcomes. For example, amodelmatch
operator [1] finds correspondences between the elements of
two models and packages these as a mapping between the
models. A merge operator [1] can then be used to com-

Communicated by Dr Benoit Combemale.

B Rick Salay
rsalay@cs.toronto.edu

Sahar Kokaly
kokalys@mcmaster.ca

Alessio Di Sandro
adisandro@cs.toronto.edu

Nick L. S. Fung
nlsfung@cs.toronto.edu

Marsha Chechik
chechik@cs.toronto.edu

1 University of Toronto, Toronto, Canada

2 McMaster University, Hamilton, Canada

bine the content of the two models using the correspondence
information in the mapping. Model management approaches
typically usemegamodels [3] to represent sets of models and
their relationships in this high-level view. For example, a
megamodel could be a graphical model that uses nodes to
represent models and edges to represent relationships.

Model management has been studied from many per-
spectives including algebraic properties of operators [4,34],
categorical foundations [7], type theory [46], megamodel-
ing languages [13,39] and practical implementations [23,
27,34,36]. In these investigations, the focus is on the gen-
eral manipulation of models rather than specifically on the
manipulation of megamodels. Since megamodels are a spe-
cial kindofmodel,we expect that generalmodelmanagement
operators apply to them equally well. Yet, a megamodel is
a hierarchical “model of models” and this special charac-
teristic necessitates unique support in model management.
Specifically, we identify the following requirements:

– (R1) Since megamodels represent collections (of mod-
els and relationships), their manipulation should be like
that of other collection types (e.g., lists, graphs, etc.)
commonly found in modern programming languages.
In particular, three collection operators are widely used:
map, filter and reduce.

– (R2) Since megamodels represent heterogeneous collec-
tions, their manipulation requires a sound approach for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00738-9&domain=pdf

www.manaraa.com

232 R. Salay et al.

Fig. 1 Motivating example: IT standard change

decoupling megamodel management from the special
handling required by the different model and relation-
ship types found within them.

In this paper, we define a strategy for heterogeneous meg-
amodel management that addresses these requirements. To
address requirement (R1), we focus on three widely used
collections operators: map for applying a function to every
element of a collection, reduce for aggregating elements in
a collection and filter for extracting a subset of the col-
lection using a property as a selector. While megamodels
bear similarity to collections in programming, they also have
their unique challenges that limit our ability to apply these
techniques without some adaptation. To address requirement
(R2), we turn to the programming concept of polymorphism
used to address function heterogeneity, and adapt it to trans-
formations over models and relationships. We illustrate this
strategy below.
Motivating scenario A company uses a megamodel to track
its modeling artifacts (heterogeneous models and relation-
ships between them), as seen in Fig. 1. The company wants
to change the naming convention across all of its modeling
artifacts by using a renaming operation, which has polymor-
phic variants for the differentmodel types it is applied to. The
renaming adds the year in which the model was created to its
name. In addition, the companywants to eliminate the variety
of differentmodel types used for the samekindof information
by using only UML state machines for state-like behavioral
models (e.g., activity diagrams) and UML class diagrams
for structural models (e.g., entity-relationship diagrams).
Finally, they would like to filter out all the non-compliant

models, where compliance is a polymorphic property, and
merge the models of the same type to do some further anal-
ysis.

A natural way to execute these steps is to (1) use map
to apply the renaming transformation to all models using the
appropriate variant of the renaming operation for each model
type, (2) use map again to apply the UML transformation
to all renamed models using the appropriate transformation
operation for each model type based on its nature (state-like
behavioral vs. structural), (3) use filter to extract the non-
compliant models and the relationships between these, (4)
use reduce with a merge transformation to combine all the
resulting non-compliant models pairwise, correctly taking
into account the relationships between them.

Thus, we need collection operators to manipulate entire
graphs of related models rather than just lists of models. Fur-
thermore, we need to allow invoking map and reduce with
transformations that can accept graphs of models and rela-
tionships as input and produce these as output. Finally, we
need our collection-based operators to work on heteroge-
neous sets of models, correctly handling the application of
operations or properties based on the model types they are
applied to, and ensuring the relationships between models
are correctly handled as well.
Contributions This paper makes the following contributions:

1. We formally define versions ofmap, reduce and filter col-
lection operators adapted for heterogeneousmegamodels
which treat relationships between models as first class
entities:

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 233

– map—for applying a transformation to the elements
of a megamodel;

– reduce—for aggregating the elements of a meg-
amodel using a transformation; and

– filter—for extracting a subset of elements of a meg-
amodel that satisfy a property.

2. We analyze the complexity of the operators.
3. We demonstrate the approach by using the operators to

express several non-trivial megamodel management sce-
narios.

4. We report on an implementation of the operators and
evaluate its scalability experimentally.

5. We apply the approach and tool support to a practical
problem from the automotive safety domain.

The rest of this paper is organized as follows: After fixing
the terminology inSect. 2,wedefine the three collectionoper-
ators for megamodels in Sect. 3. Section 4 illustrates these on
six practical scenarios. Section 5 analyzes the complexity of
the operators. Section 6 describes tool support with experi-
ments reported in Sect. 7.We describe a practical application
of automotive safety case impact assessment in Sect. 8. We
compare our approach with related work in Sect. 9 and con-
clude inSect. 10with a summaryof the paper and adiscussion
of future research directions.

This paper expands our previous results [38] on homo-
geneous megamodel collection operators in several ways.
First, we have added the formal details for supporting poly-
morphism (see Sect. 2). They are needed for supporting
heterogeneity within the collection operators. Second, we
have adapted the operator descriptions to address hetero-
geneity (see Sect. 3). Third, we significantly modified and
expanded the set of scenarios we handle to include operators
with heterogeneity (see Sect. 4). Fourth, we have developed
tool support for handling polymorphism, which we discuss
in Sect. 6. Fifth, we report on the results of experiments to
evaluate the scalability of the tool support in Sect. 7. Finally,
we have added a qualitative evaluation of the tool support by
using it to implement a practical problem from the automo-
tive safety domain in Sect. 8.

2 Preliminaries

In this section, we formalize the concept of megamodel and
give other necessary definitions.

2.1 Basic types

We begin by defining the concept of “mega-graphs”—
mgraphs. Informally, a megamodel is an mgraph whose
nodes refer to artifacts in a repository.

Definition 1 (mgraph) An mgraph is a structure that is an
instance of the metamodel in Fig. 2. Given an mgraph G, we
write GC to denote the set of nodes in node class C . When
C is omitted, the node class is Node. We use abbreviations
Mod and Rel for node classes Model and Relationship,
respectively. For n ∈ G, we write n.R to denote the set of
nodes on the other end of reference R from node n.

In this paper, we limit our focus to megamodels that can
refer to artifacts corresponding to the concrete node classes
in Fig. 2. A relationship is a mapping between two or more
models. A transformation application is the record of having
performed a given transformation on a set of input models
and relationships to produce a set of output models and rela-
tionships. We make no further assumptions about the way
models relationships or transformation applications are rep-
resented or what they contain. The “mega” versions of these
artifacts: megamodels, megarels and megaApps are defined
below.

We assume the existence of a repository.

Definition 2 (Repository) A repository R is a store for arti-
facts that is itself structured as an mgraph of artifacts (i.e.,
rather than an mgraph of symbols).

Models, relationships and transformation applications are
typedbymodel types, relationship types and transformations,
respectively.

We assume that there exists a type compatibility preorder
�TC over model and relationship types where T ′ �TC T
means that an instance of type T ′ can be used wherever an
instance of type T is needed. Figure 3 shows an example type
compatibility preorder with specialized model types of class
diagram (CD) to only allow single inheritance (SICD) and pro-
viding Java features (JCD). CDrel is a type of relationship.

Mappings between mgraphs are calledmgraph homomor-
phisms.

Definition 3 (mgraphhomomorphism)GivenmgraphsG,G ′
and a type compatibility preorder�TC, anmgraph homomor-
phism f : G → G ′ is a function fNode : GNode → G ′

Node

Model Rela�onship

Transforma�on
Applica�on

Megamodelend

Typed Node

Node

Megarel

name

type

Transformable out
in

end

Transforma�on
MegaApp

Mega
Transformable

out
in

1..* 1..*

1..*

1..*

1..*

1..*

Fig. 2 Metamodel of an mgraph. We use the Ecore conventions for
metamodeling [42] where the boxes represent classes of elements and
the named directed associations between classes are called references

123

www.manaraa.com

234 R. Salay et al.

CD

Model Rel

SICD JCD

CDrel

Fig. 3 A fragment of a type hierarchy with hollow arrows showing the
type compatibility preorder �TC

that satisfies the following conditions for preserving all node
classes C , references R and types:

1. ∀n ∈ G· n ∈ GC ⇒ fNode(n) ∈ G ′
C

2. ∀n, n′ ∈ G· n′ ∈ n.R ⇒ fNode(n′) ∈ fNode(n).R
3. ∀n ∈ GTypedNode · fNode(n).type �TC n.type

A typedmgraph homomorphism is onewhere�TC is equality.
An mgraph isomorphism is a one where fNode is a bijection
and the types are equal.

Condition (1) ensures that f preserves node classes and
condition (2) ensures that f preserves the endpoints of
references. These are standard conditions for a homomor-
phism to be a structure-preserving mapping. Condition (3)
additionally ensures that for typed nodes, f preserves type
compatibility of nodes. Note that node names need not be
preserved by f . The composition h = f ◦ g of mgraph
homomorphisms is formed by composing functions hNode =
fNode ◦ gNode. The three conditions hold for h; thus, it is an
mgraph homomorphism.

2.2 Mega artifacts

Intuitively, all mega artifacts represent collections of arti-
facts.

Definition 4 (Megamodels) Let amodel repositoryR of arti-
facts be given. A megamodel is a pair 〈G, d〉, where G is an
mgraph and d : G → R is a typed mgraph homomorphism,
called the dereferencing mapping, that maps the nodes of G
to the artifacts they represent in R.

When it is clear from the context, we use a megamodel inter-
changeably with its mgraph.

Definition 5 (Megarel) A megarel is a tuple 〈G, d, end〉,
where G is an mgraph restricted to containing only
Relationship and Megarel nodes, d : G → R is the
dereferencing map and end = {〈X , r〉|X is a megamodel in
R and r is the set of end references from nodes in G to nodes
in X}.

Thus, a megarel is a “relationship-like” collection that has
megamodels on its ends.

Definition 6 (megaApp) A megaApp is a tuple
〈G, d, in, out〉, where G is an mgraph restricted to contain-
ing only Transformation Application and
Transformation MegaApp nodes, d : G → R is the deref-
erencing map, in = {〈X , r〉|X is a megamodel or megarel in
R and r is the set of in references from nodes in G to nodes
in X}, and out is defined similarly to in.

Thus, both megarel and megaApp artifacts are connected
to other artifacts in R. Figure 4 gives an example of a
repository showing different artifacts including the three
megamodels X, X1, X2, megarel XR, as well as multiple mod-
els and relationships. To avoid visual clutter in this example,
only six dereferencing mappings are shown for illustration
purposes (dotted arrows). The remaining dereferencingmap-
pings are implied by the naming; however, in general, names
across the mapping may be different.

In the concrete syntax for megamodels and megarels that
we use for illustrations in this paper, models are depicted as
boxes; relationships are depicted as diamonds with binary
relationships shown optionally as a line. A transformation
application is depicted as an oval, with the input elements
connected by dashed arrows pointing into the oval, and out-
put elements connected by dashed arrows pointing out of
the oval. All models, relationships and transformation appli-
cations have a label of form name:type, where the name is
optional. Megamodels, megarels and megaApps are shown
similarly to their non-“mega” counterparts butwith thick bor-
ders. Furthermore, these elements are not typed.

A:ER B:CD

C:CD

R2:CDrel

:CDMatchX2XRX1

R3:CDER

E:CD

B:CD

C:CD

R1:CDrel

R2:CDrel

H:CD

A:ER B:CD

C:CD

E:CD

H:CD

R1:CDrel

R2:CDrel
R3:CDER

:CDMatch

X

X1

XR X2

Fig. 4 Anexample of a repository includingmegamodels and amegarel
showing the concrete syntax. Example dereferencing mappings from
megamodel elements to corresponding artifacts are shown as dotted
arrows

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 235

For example, in megamodel X at the top of Fig. 4, the
box with label B : CD refers to the class diagram with name
B; the diamond R3 : CDER refers to the corresponding CDER

relationship artifact with name R3; the oval labeled :CDMatch
refers to the corresponding transformation application arti-
fact containing a record (e.g., trace mappings) of applying
the transformation CDMatch to class diagrams B and C; and,
the thick-bordered box labeled X1 refers to the megamodel
X1 shown below it, which itself refers to models B and E.

2.3 Properties and transformations

Models and relationships can satisfy properties and partici-
pate in transformations. We define these below.

Definition 7 (Property) A property is a constraint on an arti-
fact. Given an artifact A and a property P , we write A |� P
to denote that A satisfies P . Every property is defined for an
artifact of a specific type. If A has type TA, P has type TP and
the type compatibility preorder �TC is given, the condition
(A |� P) ⇒ TA �TC TP must hold.

Thus, we assume that only artifacts compatible with the type
of the property can satisfy the property.

A transformation is a function that maps models and rela-
tionships to other models and relationships.

Definition 8 (Transformation) A transformation is a pair
〈Σ, F〉 where

– Σ = 〈I , O〉 where I ∪ O is an mgraph, I is an mgraph
called the input signature and O is an mgraph fragment
called the output signature;

– F is an implementation of a function from megamodels
with mgraph I to megamodels with mgraph I ∪ O .

Thus, the transformation takes a megamodel structured
by I as input and produces new models and relationships as
output according to O . We make no assumptions about the
language used for expressing properties or defining transfor-
mations. Note that the output signature is only an mgraph
fragment since the output of a transformation can con-
tain relationships that connect models given as the input.
For example, Fig. 5 shows a signature for a transformation
CDMerge that accepts two class diagrams and a relationship
between them and produces the merged class diagram with
relationships back to the original two class diagrams. The
input signature consists of the models a, b and relationship r

and the output signature has model ab with relationships ra
and rb which connect to input models a and b, respectively.
Written textually, the signature consists of

I = {a : CD, b : CD, r(a, b) : CDrel(CD, CD)},
O = {ab : CD, ra(a, ab) : CDrel(CD, CD),

rb(b, ab) : CDrel(CD, CD)}.

a:CD

b:CD

r:CDrel CDMerge ab:CD

rb:CDrel

ra:CDrel

Fig. 5 Signature of a transformation CDMerge for merging class dia-
grams

Our focus in this paper is the application of a transfor-
mation within a larger megamodel to transform a portion of
it. We can apply a transformation to any portion of a larger
megamodel that matches the input signature.

Definition 9 (Transformationapplication)Givenmegamodel
X = 〈GX , dX 〉 and transformation F with signature 〈I , O〉,
a binding of F within X is an injective mgraph homomor-
phism b : I → GX . Transformation F is applied to X at
b, written F(b), by using artifacts dX ◦ b as the input and
computing the output artifacts using F .

That is, the binding b of F within X identifies a subset
of nodes in X that match I . An important special type of
transformation we consider is one where the output is the
same regardless of the order in which the input arguments
are bound.

Definition 10 (Commutative transformation) Given a trans-
formation F with a signature 〈I , O〉, we say that F is
commutative iff for every pair of isomorphic bindings b, b′
(i.e., mgraph isomorphisms of I), F(b) is isomorphic to
F(b′).

CDMerge in Fig. 5 is an example of a commutative
transformation—given any two class diagrams M1, M2 related
by a relationship R, the merged output is the same regardless
of whether we use the binding {a := M1, b := M2, r := R} or
{a := M2, b := M1, r := R}.

2.4 Polymorphism

Definition 9 allows the application of specific transforma-
tions to a megamodel. But to handle heterogeneity within
a megamodel, we require support for polymorphic transfor-
mation application. For example, if we want to convert all
the models in a megamodel to a common type (e.g., state
machine, class diagram, etc., to UML models), we would
like to use map and have it automatically use the correct
converter for each model. Similarly, we may want to use
filter to extract all models that have errors, but the property
HasError may be defined differently for different types.

In programming, there are two main kinds of polymor-
phism: universal and ad hoc [5]. In universal polymorphism,
the same function implementation can be used with a poten-
tially infinite number of types where the type is either taken

123

www.manaraa.com

236 R. Salay et al.

as a parameter (parametric polymorphism) or is a subtype
(inclusion polymorphism). A length function that computes
the length of a list for any list type is an example of paramet-
ric polymorphism. Ad hoc polymorphism applies to a finite
set of types, and the implementations for different types can
vary arbitrarily, e.g., the + operator for adding integers and
concatenating strings.

As in programming, in model management, different
kinds of polymorphism can be used to define polymorphic
transformations. Inclusion polymorphism for transforma-
tions has been studied (e.g., [18]) as a way to reuse a
transformation for subtypes. For example, a transforma-
tion that converts a hierarchical state machine to Java code
can safely be used for the state machine subtype that does
not allow hierarchy. While inclusion polymorphism permits
transformation reuse, it cannot take semantic differences
between types into account. For example, a model manage-
ment merge operation operates differently for state machines
than for class diagrams. These situations require ad hoc poly-
morphism.

In this paper, we support heterogeneity using both inclu-
sion and ad hoc polymorphism. A transformation is applied
by binding the signature to artifacts in the repository. Inclu-
sionpolymorphism is addressedbyallowing a transformation
to apply to artifacts with more specialized types than those
given in the signature. This is implemented in transforma-
tion application according to Definition 9 because mgraph
homomorphismsuse the type compatibility preorder�TC (see
Definition 3).

Ad hoc polymorphism is supported by allowing the
transformation name to be overloaded to support variant
implementations of the same transformation with more spe-
cialized signatures.When a transformationwith a given name
is invoked, the most specific applicable variant is applied.
We formally define what we mean by a polymorphic variant
below.

Definition 11 (Polymorphic variant) Given a transformation
F with a signature 〈I , O〉, a polymorphic variant of F is a
pair 〈F ′, αFF ′ 〉, where F ′ is a transformationwith a signature
〈I ′, O ′〉 with name(F ′) = name(F) and αFF ′ : I ∪ O →
I ′∪O ′ is a bijectivemgraph homomorphism called the align-
ment mapping. We call the restriction αFF ′ : I → I ′ of αFF ′
to the input signature I , the input alignment mapping.

Thus, a polymorphic variant of a transformation F has the
same name as F , and the alignment mapping shows the cor-
respondence between the arguments. Since the alignment
mapping is a bijection, all signatures of polymorphic vari-
ants have the same structure but more specialized model and
relationship types. Note that a more general formulation of
polymorphism can allow polymorphic variants to extend the
signature (i.e., the alignment mapping is only injective). In
this paper, we consider only the more restricted conception

of polymorphism and leave the more general case for future
work. In order to formalize the concept of “the most spe-
cific polymorphic variant,” we define a specialization order
relation over polymorphic variants.

Definition 12 (Polymorphic variant specialization) Given
a transformation F with a signature 〈I , O〉 and poly-
morphic variants 〈F ′, αFF ′ 〉 and 〈F ′′, αFF ′′ 〉, we say that
〈F ′′, αFF ′′ 〉 is more specialized than 〈F ′, αFF ′ 〉, denoted by
〈F ′′, αFF ′′ 〉 ≤ 〈F ′, αFF ′ 〉, iff there exists a polymorphic vari-
ant 〈F ′′, αF ′F ′′ 〉 of F ′, where αF ′F ′′ ◦ αFF ′ = αFF ′′ .

Definition 13 (Most specific variant) Given a transformation
F with a signature 〈I , O〉, a polymorphic variant 〈F ′, αFF ′ 〉,
an mgraph G and an mgraph homomorphism b : I → G,
we call 〈F ′, αFF ′ 〉 an applicable variant of F at b if there
exists an mgraph homomorphism b′ : I ′ → G such that
b′ ◦ αFF ′ = b. 〈F ′, αFF ′ 〉 is called the most specific variant
of F at b iff there does not exist a different applicable variant
〈F ′′, αFF ′′ 〉 of F at b such that F ′′ ≤ F .

To illustrate, consider the family of polymorphic variants
for the Match operation shown in Fig. 6a. This is based on

a:CD

b:CD
Match r:CDrel

a:Model

b:Model
Match r:Rel

Match_M

Match_CD

a:JCD

b:JCD
Match r:CDrel

Match_JCD

C:SICD

B:CD

A:CD

D:JCD
E:JCD

(a)

(b)

Fig. 6 a A family of polymorphic variants of the Match operation.
To reduce visual clutter, only the alignment mapping αMCD is shown
between Match_M and its polymorphic variant Match_CD. The others
are similar. b An example mgraph

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 237

the type compatibility relation shown in Fig. 3. The hollow
arrows in Fig. 6a show the derived specialization relation
between the variants. Match_JCD is a more specialized vari-
ant of Match than Match_CD. This is the case according to
Defn. 12 becausewe can define Match_JCD as a polymorphic
variant of Match_CD and compose this alignment mapping
with the alignmentmapping between Match_CD and Match to
get the alignment mapping between Match_JCD and Match.

If Match is applied to the mgraph shown in Fig. 6b,
the most specific variant that applies to the bindings {a :=
D, b := E} and {a := E, b := D} is Match_JCD.1 For every
other binding, the most specific variant is Match_CD. For a
binding such as {a := B, b := C}, we rely both on ad hoc
polymorphism since we use the variant Match_CD and an
inclusion polymorphism since SICD is type compatible with
CD.

In order for the collection operators we define in Sect. 3 to
operate deterministically, we require that the polymorphism
transformation mechanism selects a unique variant to apply
in every situation. Thus, we require that there always be a
unique most specific variant. This defines a soundness con-
dition for families of polymorphic variants.

Definition 14 (Soundness of polymorphism) Given a trans-
formation F with a signature 〈I , O〉, the family of polymor-
phic variants VF of F is sound iff for all mgraphs G and
mgraph homomorphisms b : I → G, there exists a unique
most specific variant 〈F ′, αFF ′ 〉 ∈ VF at b.

It is easy to see that the family of polymorphic variants
shown in Fig. 6a always has a unique most specific variant
for any binding {a := x, b := y} to models x and y; thus,
it is a sound family of variants. Finally, we can generalize
Definition 9 to support ad hoc polymorphic transformation
application.

Definition 15 (Polymorphic trans. application)Given ameg-
amodel X = 〈GX , dX 〉, a transformation F with a signature
〈I , O〉 and a sound family of polymorphic variants VF of F , a
polymorphic binding of F within X is a pair 〈b, 〈F ′, αFF ′ 〉〉,
where b is an injective mgraph homomorphism b : I → GX

and 〈F ′, αFF ′ 〉 ∈ VF is the most specific polymorphic vari-
ant in VF at b. F is applied to X at b, written F(b), using
artifacts dX ◦b as the input and computing the output artifacts
using F ′.

For example, if we assume that Fig. 6b represents a meg-
amodel (i.e., rather than just an mgraph), an example of a
polymorphic binding of Match in Fig. 6a is 〈{a := A, b :=
B}, 〈Match_CD, αMCD〉〉.

1 We assume that Match is a commutativemodelmanagement operator;
thus, the operator application on either binding will yield the same
output relationship.

2.5 Traditional megamodeling operators

Asdiscussed inSect. 1, a number ofmodelmanagement oper-
ators have been defined, with match, merge, diff, and slice
among them. For the illustrations in this paper, we require
only one of them—a simple type of megamodel merge that
we call union2 The union operator combines the content of
a set of megamodels into a single megamodel in which ele-
ments that refer to the same artifact are merged into a single
element.

There are two possibilities for the set of input meg-
amodels: (a) either they are an mgraph of megamodels and
megarels, or (b) they are a set of megarels that share the
same endpoints. Figure 7 illustrates both cases. In case (a),
the result is a megamodel while in case (b), it is a megarel
with the same endpoints as the inputs.

The union process can cause conflicts coming from the
following two sources. If megamodel elements refer to the
same artifact but the names of these elements differ, it is not
clear which name to use for the merged element. To resolve
this, we assume that the names in the union are a combi-
nation of the original names. Another conflict occurs when
different artifacts are referred to by different elements using
the same name. In this case, we assume that the names are
made distinct in the union. Both of these conflict scenarios
are illustrated at the bottom of part (a) in Fig. 7. The deref-
erencing mappings for these megamodels are not shown, but
we assume that both A and D refer to the same model, and in
the union, the name A_D is used. In addition, the element C
in X2 refers to a different model than C in X3, and the latter
is assigned the name C_1 in the result.

3 Megamodel collection operators

In this section, we define the set of megamodel collection
operators we are proposing in this paper: map in Sect. 3.1,
reduce in Sect. 3.2 and filter in Sect. 3.3. Their signatures
are map[T] : P(M) → P(M), reduce[T] : M → M,
and filter[P] : M → M, respectively, where T is the set
of model transformations,M is the set of megamodels, P is
the set of model properties, andP is the powerset operator.

All three operators are higher order and accept a trans-
formation or a model property as a parameter (indicated in
square brackets). The benefits of using higher-order oper-
ators in programming are well-known. In particular, they
are useful for encoding common programming idioms (e.g.,
mapping, filtering, etc.) to allow for clearer and more con-
cise programs. We illustrate this for model management in

2 In this paper, we use bold font for the megamodel operators union,
map, reduce and filter defined in this paper and italics for all other
operators.

123

www.manaraa.com

238 R. Salay et al.

B:CD

A:CD

C:CD

X1 XR

R1:CDrel

R2:CDrel

X2
(a)

(b)

X3

D:CD

A:CD C:CD

R3:CDrel

:union

B:CD

A_D:CD

C:CD
R1:CDrel

R2:CDrel

C_1:CDR3:CDrel

XU

:union

X1

XR X2

:unionXR1 XRU

X1
X2

XR

XU

X3

Fig. 7 An illustration of the union operator applied to a an mgraph of
megamodels (megamodel contents shown underneath), and b a set of
megarels that share the same endpoints

Sect. 4 by presenting scenarios that carry out complex proce-
dures on megamodels using only relatively short workflows.
In this section, we given the formal details of the operators,
describing each operator as follows: first, the standard usage;
second, the special adaptation needed to handle megamod-
els; third, the behavior defined as an algorithm, and finally, a
discussion of how heterogeneity is handled.

3.1 Operator map

Standard Usage The usual behavior of a map operation is to
traverse a collection (e.g., list, tree, etc.) and apply a func-
tion to the value at each node in the collection. The result is
a collection with the same size and structure as the original
with the function output value at each node. For example,
given the list of integers L = [10, 13, 4, 5] and the function
Double that takes an integer and doubles it, applying map
with Double to L yields the list [20, 26, 8, 10]. If the func-
tion has more than one argument, the mapped version can
take a collection (with the same size and structure) for each
argument, and the function is applied at a given node in the
collection using the value at that node in each argument in
the collection.
Adaptation for Megamodels Since a transformation input
signature is an mgraph, the map operator generalizes the
standard usage discussed above by applying the transforma-

tion to every possible binding of the input signature in the
input megamodel(s). The collection of outputs from these
applications forms the output megamodel. In the special case
that the input signature consists of a single model, this is
equivalent to the standard usage.

When the transformation signature consists of a single
input and output type and uses a single input megamodel
which happens to be a set (i.e., no relationships) of instances
of the input type, then our map operator produces the same
result as a standard map operator applied to a set. However,
in the general case, map is more complex and differs from
the behavior of the standard map. In particular,

1. The output megamodel may not have the same structure
as the input megamodel since the structure is dependent
on the output signature of the transformation.

2. The size of the output may not be equal to the size of
the input. For example, if a transformation FF takes two
models as input and produces one as its output, applying
map to it on a megamodel with n models will produce
as many as n × (n − 1) output models since each pair
of input models may be matched in a binding. At the
other extreme, if no input models form a binding, then
the output will be the empty megamodel.

3. When there aremultiple input megamodels, each binding
of the input signature is split across the inputmegamodels
in a user-definable way.

4. When the transformation is commutative, we (may) want
to avoid replication in the output due to isomorphic
bindings. For example, if the transformation FF is com-
mutative, we will get each output model twice since there
are two ways to apply FF to a pair of models.

In what follows, we propose an operatormap for handling
megamodels while avoiding the above problems.
Operator Definition map[F]({Xe|e ∈ I }) applies a model
transformation F with a signature 〈I , O〉 to a set of input
megamodels {Xe|e ∈ I } indexed by the input signature I
and satisfying the precondition C1:

(C1) For all relationships r(a, b) ∈ I , either Xr is a meg-
amodel and Xa = Xb = Xr or Xr is a megaRel
connecting Xa and Xb.

That is, an input relationshipmust either be taken from the
same megamodel as its endpoint models or from a megaRel
connecting the megamodels from which its endpoint models
are taken. Note that the megamodels Xe need not be distinct;
thus, multiple input arguments can be taken from the same
megamodel.

map produces an output megamodel for each element of
the output signature O . The behavior is defined by the algo-
rithm in Fig. 8.

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 239

Algorithm: Apply map
Input: transformation F with signature 〈I, O〉,

megamodels {Xe|e ∈ I}
Output: set of megamodels {Ye|e ∈ O}
1: for (e ∈ O) { let Ye := ∅ }
2: for (polymorphic binding 〈b, 〈F ′, α〉〉 in {Xe|e ∈ I}) {
3: if F is commutative then
4: if isomorphism of b already done then continue;
5: for (e ∈ O) { add element e of F (b) to Ye } }
6: return {Ye|e ∈ O}

Fig. 8 Algorithm defining behavior of the map operator

A:CD

B:CD

C:CD

X1 XR:map[Match]

R2:CDrel

R3:CDrel

:Match_CD

:Match_CD

X2 b

a
(a)

X XR:map[Match]a,b
(b)

X1

X2

XR

Fig. 9 a An illustration of applying map to the Match transformation
using two input megamodels (megamodel content shown underneath);
b using the same input megamodel for both arguments

We explain the algorithm using the illustration in Fig. 9a
of applying map to the polymorphic Match transforma-
tion given in Fig. 6a. The input signature consists of
{a : Model, b : Model}, and theoutput signature is {r(a, b) : Rel}.
The diagram in Fig. 9a shows map(Match) applied to meg-
amodels X1 and X2 to produce an output megarel XR. Thus,
the input megamodels to the algorithm are Xa := X1 and
Xb := X2, and the one output, Yr , corresponding to the out-
put signature element r, produces the value for XR.

In line 1, the output megamodels are initialized to the
empty megamodel. In our example, Yr = ∅. Lines 2–5 iter-
ate over all possible bindings of I in the input megamodels.
In line 2, a fresh binding (i.e., previously unmatched) for
the input signature of F is found in the input megamod-
els. Thus, in this example, a binding for a is drawn from
X1 and a binding for b from X2. Assume that this binding is
〈{a := A, b := C}, 〈Match_CD, MCD〉〉 since Match_CD is the
most specific variant of Match (see Fig. 6a). Lines 3–4 check
whether isomorphic bindings should be ignored because F
is commutative. Binding isomorphisms do not occur in this

example, so we illustrate them separately below. In line 5,
the output of applying the transformation to the combined
input binding is added to the output megamodels. Thus, in
our example, Match_CD is applied at {a := A, b := C} and
the resulting CDrel relationship R2 is added to Yr . Line 6
returns the resulting output.

In our example, there are only two matches; thus, the
resulting megarel contains two relationships. However, con-
sider the alternative application of map to Match shown
in Fig. 9b. Here, both input elements are taken from the
input megamodel X. Assume that X contains all three mod-
els {A : CD, B : CD, C : CD}. In that case, there are six possible
ways to match the input signature. However, since Match is
designated as commutative, a binding

〈{a := n, b := m}, 〈Match_CD, MCD〉〉

produces the same output as

〈{a := m, b := n}, 〈Match_CD, MCD〉〉;

thus, only three applications of Match are used to produce
the output.
Heterogeneity Operator map applies a transformation to
all binding sites to which it is applicable in the input
megamodels. Thus, when it is used with a polymorphic
transformation, it can be applied to heterogeneousmegamod-
els because different polymorphic variants are automatically
chosen depending on the types of the artifacts at each binding
site. For example, applyingmap[Match] to themegamodel in
Fig. 6b yields 10 applications—one for every pair of models.
Typically, a model management operator such as Match, that
must be applicable to any type of model, will have a large
number of polymorphic variants, while more type-specific
transformations such as state machine flattening will have a
more restricted family of variants (e.g., handling only vari-
ants of state machines).

3.2 Operator reduce

Standard usage There are different variants of the operator
reduce (also called fold, aggregate, etc.) used inprogramming
languages but they typically accept a binary function F and
apply it over values x1, x2, . . . , xn in a recursive collection
(e.g., list, tree, etc.) by accumulating the intermediate val-
ues, e.g., F(xn, F(. . . , F(x3, F(x2, x1)) . . .)). For example,
applying reduce with the “+” operator to the list [1, 3, 1, 9]
produces the sum 14.
Adaptation for megamodels In a similar way, we expect the
reduce operator to accept a transformation F and use it to
combine the elements of the input megamodel. Our approach
is to view F as a rewrite rule, by repeatedly applying F in
place and deleting the input elements until F can no longer

123

www.manaraa.com

240 R. Salay et al.

be applied. We must consider several issues:

1. What should be the criteria that F must satisfy for this
process to terminate?

2. Since a megamodel is not a recursively defined struc-
ture and has no well-defined ordering on its elements,
we cannot rely on a specific traversal path. Thus, F must
be confluent—the final result of reduce should be same
regardless of the order in which we apply F to the meg-
amodel.

3. Since the input elements may have relationships to other
neighboring elements in the megamodel, we must be
careful to preserve this information when the relation-
ships are deleted.

We address issues (1) and (2) in the definition of reduce
below with appropriate assumptions on F . We address issue
(3) by using relationship composition operators to construct
new relationships to neighboring elements as needed. As an
illustration, assume we are using reduce with the CDMerge

transformation (see Fig. 5) to merge a megamodel of class
diagrams and CDRel relationships. Figure 11 shows one iter-
ation of the reduction. In step (1), CDMerge is applied to an
arbitrarily chosen pair of models (in this case, B and C) to
produce a new class diagram BC. In step (2), composition
operators are invoked to connect BC to the neighbors of B and
C. Finally, in step (3), the original models B and C are deleted
together with all of their relationships.
Operator definition We now define a new operator
reduce[F](X) aimed to apply a transformation F to reduce
the content of a megamodel X . We begin by making the fol-
lowing assumptions:

(I) We assume availability of polymorphic variants of the
relationship composition operator Compose for all rela-
tionship combinations we encounter.

(II) In order to achieve confluence, F is required to be
commutative and associativewith itself andwith all rela-
tionship composition operators used in item (I).

(III) In order for the reduction process to terminate, we put
the constraint on F that it must be strictly reducing in
output types: for everymodel type in the input signature,
theremust be fewermodels of that type in the output sig-
nature; and, for relationship type in the input signature,
there must be fewer relationships of that type in the out-
put signature that are connected to output models on
both (or all, for n-ary relationships) ends.

Figure 10 gives the algorithm for defining the behavior of
reduce. In line 1, Y is initialized to the same value as the
input. Lines 2–8 iterate for each binding of F in Y until no
more can be found, and the algorithm terminates returning Y

Algorithm: Apply reduce
Input: transformation F with signature 〈I, O〉,

megamodel X
Output: megamodel Y
1: let Y := X
2: for (polymorphic binding 〈b, 〈F, α〉〉 in Y) {
3: apply F (b) generating output K′;
4: for (m ∈ KMod, m′ ∈ K′

Mod, r(m, m′) ∈ K′
Rel) {

5: for (m′′ ∈ YMod, r′(m′′, m) ∈ YRel) {
6: let r′′(m′, m′′) :=Compose(r′, r);
7: add r′′ to Y }}
8: delete elements in K from Y }
9: return Y

Fig. 10 Algorithm defining behavior of the reduce operator

(line 10). In the loop, for a given binding K (line 2), F is first
applied to get K ′ in line 3.Then, lines 4–8perform the steps as
described in Fig. 11 to connect the neighbors of input models
in K to the output models in K ′ using composition operators
and then deleting the input models in K . For each output
model m′ with a relationship r to an input model m (line
4), and for each neighbor model m′′ of input model m with
relationship r ′ (line 5), a new relationship r ′′ is constructed
directly from m′′ to m′ by composing r ′ and r (line 6) using
a polymorphic Compose operator.
HeterogeneityHeterogeneity is handled in two ways with the
reduce operator. First, if the transformation F has polymor-
phic variants, then these are applied according to the model
types encountered. Thus, a single application of reduce can
be used to handle the reduction of multiple model types
within a megamodel. For example, we illustrated reduce
using a CD-specific transformation CDMerge. Instead, we
could use a polymorphic operation Merge. Second, when
composing the relationships to neighboring models, the use
of the polymorphic Compose operator takes into account the
fact that the neighboring models may be of different types.
For example, if in Fig. 11, model A were a state machine
instead of a class diagram, then f1 would need to be a state
machine-class diagram relationship (say, SMCDrel) and the
composition off1 andfB in Step (1)would need to use a poly-
morphic variant that composes an SMCDrel with a CDrel to
produce an SMCDrel.

3.3 Operator filter

Standard usageMany languages provide a filtering operation
to extract a portion of collection that satisfies some condition.
For example, filtering the list [2, 5, 6, 8, 9, 1] using the prop-
erty isEven produces the list [2, 6, 8].
Adaptation for megamodels The filter operator is similar and
applies to megamodels. A property is given as the filtering
condition, and the subset of elements that satisfy the prop-
erty is used to produce the output. We distinguish between

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 241

A:CD

B:CD

C:CD

D:CD

f1:CDrel

f2:CDrel

f3:CDrel

:CDMerge BC:CD

fB:CDrel

fC:CDrel

f1B:CDrel

f3C:CDrel

:Compose

:Compose

1

2

2

A:CD

D:CD

BC:CD

f1B:CDrel

f3C:CDrel

3

Fig. 11 An illustration of one iteration of reduce. First the merge is
applied non-deterministically (step 1). Then, the relationships to the
neighbors of the merged models are computed using appropriate com-
position operators. Finally, all input elements are deleted

model and relationship properties and treat them indepen-
dently. Thus, a model property filters only models and keeps
all relationships between the remaining models. A relation-
ship property filters only relationships and does not affect the
models.

filter differs from map and reduce in that it does not
create new models or relationships; it just creates new refer-
ences to existingmodels and relationships. Thus, all elements
of the output megamodel refer to artifacts that are already
referred to by elements of the input megamodel. This aspect
of filtermakes it an inexpensive operation compared tomap
or reduce.

If a property P , defined for a model or relationship type
T , is used for filter, then it selects all elements of type T
(or its compatible types) that satisfy the constraints in P
(see Definition 7). It is also possible to give a type T as the
property which is interpreted as the property true, satisfied
by any instance of T (or its compatible types).
Operator definition filter[P](X) filters megamodel X to
produce the least sub-megamodel of X containing all the
elements of X that satisfy property P .

The behavior of filter is given by the algorithm in Fig. 12.
Line 1 initializes the output to the empty megamodel. Lines
2–5 iterate over the model elements in X . If P is a model
property then the model is only added to the output if passes
the satisfaction check (line 4). If P is not amodel property, all
models are added to the output (line 5). A similar algorithm is
followed in lines 6–9 that iterate over relationship elements.
The only difference is that if P is not a relationship property
(and so it must be a model property), only those relationships
that already have their endpoints in the output due to the
filtering in lines 2–5 are added to the output.
Heterogeneity The use of polymorphic properties allows
filter to be used with heterogeneous megamodels. For exam-
ple, consider the model property IsMinimal which holds
when a model is of the minimum size given its semantics.
This check is complex and model type specific—e.g., check-
ing a state machine for minimality is a different algorithm
than checking a class diagram for minimality.

Algorithm: Apply filter
Input: property P , megamodel X
Output: megamodel Y
1: let Y := ∅;
2: for (m ∈ XMod) {
3: if P is a model property then
4: if m |= P then add m to Y ;
5: else add m to Y }
6: for (r ∈ XRel) {
7: if P is a relationship property then
8: if r |= P then add r to Y ;
9: else if r.end ∩ Y �= ∅ then add r to Y }
10: return Y ;

Fig. 12 Algorithm defining behavior of the filter operator

4 Application scenarios

In this section, we illustrate our collection-based hetero-
geneous megamodel management operators using several
homogeneous and heterogeneous scenarios.

4.1 Scenario: experiment driver

The goal of this scenario is to apply a transformation on a
megamodel and perform an experiment on the result of its
application. Specifically, given a megamodel XUML contain-
ing a set of heterogeneous UML diagrams (namely, class
diagrams (CDs) and state diagrams (SDs)), we wish to
apply a polymorphic transformation 2Java that translates
a class diagram to its equivalent Java code and produces a
CD2JavaRel traceability relationship from theCD to the Java
code, and similarly, translates a state diagram to its equivalent
Java code and produces a SD2JavaRel traceability relation-
ship from SD to the Java code. Then, we wish to apply a
polymorphic evaluation transformation ECheck on each of
CD2JavaRel and SD2JavaRel in themegarels resulting from
the transformation application. ECheck computes the num-
ber of elements in each transformed UML diagram that do
not have Java counterparts. Finally, we would like to add
these up via a Sum operation to learn the total number of
incidents where this occurs. If the sum is greater than zero,
then there is a problem with the transformation. Figure 13
shows the chain of operators required to accomplish this via
the following steps:

1. Applymap[2Java](XUML) to produce X1which contains
the Java code, and XRwhich is the megarel containing all
heterogeneous relationships between XUML and X1.

2. Apply map[ECheck](XR) to produce a megamodel X2

which contains the evaluation ECheck for each type of
relationship in XR.

3. Apply reduce[Sum](X2) to produce the final result X3

containing a single value which is the sum of the results

123

www.manaraa.com

242 R. Salay et al.

Fig. 13 Illustration of the experiment driver scenario

ofmap[ECheck](XR). A value greater than zero indicates
a problem with the transformation application.

4.2 Scenario: IT standard change

Consider the motivating scenario from Sect. 1, where a com-
pany wants to change the naming convention across all of
its modeling artifacts which are part of a megamodel X1.
This is done using a Rename operation which has polymor-
phic variants for the different model types it is applied to.
In addition, the company wants to eliminate the variety of
different model types used for the same kind of information
by standardizing UML state machines for state-like behav-
ioral models and UML class diagrams for structural models.
Finally, they would like to filter out all of the non-compliant
models, where compliance is a polymorphic property, and
merge the models of the same type to do some further anal-
ysis.

Figure 14 shows the chain of operators required to accom-
plish this scenario:

1. Applymap[Rename](X1) to produce X2, which contains
all the modeling artifacts with the new naming conven-
tion.

2. Apply map[ToUML](X2) to map polymorphic
ToUML_SM and ToUML_CD transformations on the state-
like behavioral models and the structural models, respec-
tively. This can be identified by a property in each model
which indicates the model’s nature (state-like behav-
ioral vs. structural). This produces a new megamodel
X3 containing only UML state machines and class dia-
grams.

3. Next, filter[NonCompliant](X3) is applied using the
polymorphic property NonCompliant to produce a meg-
amodel X4, which contains all the non-compliant models
of X3.

4. Finally, reduce[Merge](X4) is applied using the poly-
morphic operator Merge to produce a megamodel X4

which contains all of the non-compliant models of X3.
The result can then be reviewed and analyzed as needed
by the company.

Fig. 14 Illustration of the IT standard change scenario

4.3 Scenario: megamodel transformation

The goal of this scenario is to apply a particular transfor-
mation on an entire megamodel. Suppose that we are given
an input megamodel XCD consisting of class diagrams (CDs)
related by class diagram relationships (CDrels), andwewish
to transform it to amegamodelXER consisting ofERdiagrams
(ERs) related by ER diagram relationships (ERrels). We are
also given the transformations CD2ER and CDrel2ERrel (see
signatures in Fig. 15)which transformCDs toERs andCDrels
to ERrels, respectively. We would like to use our operators
to accomplish this.

This transformation is illustrated in Fig. 16 and involves
the following steps:

1. Apply map[CD2ER](XCD) which, based on its signature,
applies only to the CDs in XCD and produces the meg-
amodel X1 consisting of the ER versions of all the CDs in
XCD as well as the megamodel relationship XR1.

2. Applymap[CDrel2ERrel](XCD)which, based on its sig-
nature, applies only to the CDrels in XCD and produces
the megamodel relationship XR2 consisting of a set of
ERrels with endpoints in X1. Note that the other argu-
ments come from the megamodel relationship XR1which
contains the applications of the CD2ER transformation.

3. Apply union(X1, R) to produce the final megamodel XER
which contains the corresponding ERs and the ERrels

between them.

4.4 Scenario: mass refactoring

The goal of this scenario is to perform a mass refactoring
on an entire megamodel in order to transform it to a more
desirable version of that megamodel. Suppose we are given
a megamodel XCD that contains unrelated class diagrams, a
propertyPubAtt that representsmodelswith public attributes
and its negation NoPubAtt. We wish to find models sat-
isfying PubAtt and refactor them so that public attributes
become private attributes with public getter methods using
the refactoring transformation PubGet. Figure 17 illustrates
this scenario via the following steps:

1. Apply filter[PubAtt](XCD) to produce a megamodel X1
containing the sub-megamodel of XCDwithmodelswhere
property PubAtt holds.

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 243

(a)

(b)

Fig. 15 Illustration of transformation signatures for megamodel trans-
formation scenario. a Class diagram (CD) to entity relationship (ER)
transformation, b CD relationship to ER relationship transformation

Fig. 16 Illustration of the megamodel transformation scenario

Fig. 17 Illustration of the mass refactoring scenario

2. Apply filter[NoPubAtt](XCD) to produce a megamodel
X2 containing the sub-megamodel of XCD with models
where property PubAtt does not hold.

3. Apply map[AddGet](X1) to transform the models with
the undesirable property using a refactoring transforma-
tion AddGet which produces a megamodel X3.

4. Return a megamodel X4 = union(X2, X3) (see Sect. 2)
which represents the refactored version of the original
s.t. the property PubAtt no longer holds on any of its
models.

4.5 Scenario: undesirable property removal

Consider a megamodel XCD which contains UML class
diagrams and an undesirable property Mi that represents dia-
grams with multiple inheritance. In this scenario, we aim to
identify all class diagrams that contain this property, refac-
tor them using a predefined transformation to remove the
property and merge the modified class diagrams. Figure 18
shows the workflow of operators required to accomplish this
scenario:

Fig. 18 Illustration of the undesirable property removal scenario

1. Apply filter[Mi](XCD) to produce a megamodel X1 con-
taining the sub-megamodel of XCD with models where
property Mi holds.

2. Basedon themegamodel transformationpattern described
in Sect. 4.3: apply map[RemoveMi](X1) to produce X2

which is the refactored version of X1 that no longer con-
tains the undesirable property, and

3. apply map[RemoveMiRel](XR1) to produce the meg-
amodel XR2 containing the relationships between the
refactored models.

4. Apply union(X2, XR2) to produce X3 which is the
megamodel containing the refactored models and rela-
tionships between them.

5. Apply reduce[CDMerge](X3) which applies the
CDMerge operation described in Sect. 3 on class diagrams
with relationship CDRel between them and produces a
megamodel X4 where all the related class diagrams are
now combined. The final result can now be compared
with the result of merging the pre-refactored models
which can be achieved by using reduce
[CDMerge](XCD).

4.6 Scenario: megamodel slicing

As the final scenario, we implement a model manage-
ment operator for heterogeneous megamodels. In previ-
ous work [37], we proposed a generic megamodel slicing
approach and gave the algorithm using traditional pseu-
docode. Here, we show how to re-implement the algorithm
using collection operators.

The intent of model slicing is to find all model elements
related in a specificway to a given subset of elements, called a
criterion. There are several types of model slicers (see [30]).
In this paper, we focus on the forward slice operation that
expands the criterion to the smallest subset containing all
elements dependent on elements in the criterion. Figure 19a
gives the general signature of a polymorphic model Slice
operator, where sc is the criterion expressed as a submodel of
model m. The output slice sl is another submodel of m. In this
context,weuse the unary relationship typeSub for expressing
submodels of a model. A Sub relationship connected to a
model m contains a set of links, each of which connects to
an element of m; thus, it identifies a subset of elements in m.

123

www.manaraa.com

244 R. Salay et al.

(a)

(b)

(c)

Fig. 19 Signature of polymorphic operators required in themegamodel
slicing scenario: a Slice; b Trace; and c SubMerge

(a)

(b)

Fig. 20 a An example megamodel and b its sub-megamodel

The definition of dependent on clearly varies according to
the model type; thus, Slice is a natural example of ad hoc
polymorphism.

For megamodel slicing, we assume that a sub-megamodel
is any set of submodels from a subset of models in the
megamodel. For example, Fig. 20a shows a megamodel and
Fig. 20b—a sub-megamodel consisting of submodels shown
by the shaded ovals. The original megamodel is depicted
usingdashed lines for clarity, but the sub-megamodel consists
only of the submodels. Similarly to submodels, we represent
a sub-megamodel of a megamodel X as a unary megaRel
connected to X and consisting of a set of Sub relationships
connected to the models within X.

To slice a megamodel, it is not sufficient to justmap poly-
morphic Slice over all models in the megamodel because
we must take into account the fact that there may be inter-
model dependencies across the relationships that connect
models. To address these, we assume that we have a poly-

X XSin :map[Slice]

XS1

:map[Trace]

r s1 :union

XS2

XSout

XS3

:reduce[SubMerge]

1

2

4

3

Fig. 21 Illustration of the megamodel slice scenario

morphic Trace transformation with the signature as shown
in Fig. 19b that takes a submodel of model m1 and propagates
it to the dependent submodel of model m2 across the connect-
ing relationship r. Finally, because using Slice and Trace

can produce multiple submodels for the same model (i.e.,
one from Slice and zero or more from propagating using
Trace for each neighboring model), we also assume that we
have a polymorphic submodel merge operation to combine
the submodels into a single submodel—this is provided by
the SubMerge transformation with the signature in Fig. 19c.

Figure 21 shows the core steps of the megamodel slicing
operation:

1. Apply map[Slice](XSin) using the submodels in sub-
megamodel XSin as the criterion to produce a sub-
megamodel XS1 containing the slice submodels.

2. Apply map[Trace](XS1, X) to propagate the slice sub-
models in XS1 to the corresponding submodels in neigh-
boring models to produce a sub-megamodel XS2. Note
that the r argument of Trace is taken from X, while the
s1 argument is taken from XS1.

3. Apply union(XS1, XS2) to combine the megamodels
from steps (1) and (2) to produce XS3.

4. Apply reduce[SubMerge](XS3) to merge the multiple
submodels of each model of X into a single submodel
for each model. The result is a sub-megamodel XSout.

The slice sub-megamodel of a megamodel X is obtained
by repeating these steps until the input XSin is equal to the
output XSout (i.e., a fixed point is reached).

4.7 Summary

In this section, we presented scenarios which address spe-
cific types of megamodels, transformations and properties.
Yet, they can be generalized as design patterns for simi-
lar reoccurring problems. For example, the mass refactoring
scenario can be generalized for any problem that involves a
megamodel whichmay contain elements with a certain prop-
erty which should be removed. Similarly, the megamodel
transformation scenario can be generalized to any problem
that involves a transformation of one type of megamodel

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 245

to another, given the appropriate transformations between
source and target models and source and target relations. We
have observed that in the case of the megamodel transforma-
tion pattern, the relationship transformation can be induced
from the model transformation; however, further analysis is
outside the scope of this paper.

5 Analysis

In this section, we analyze complexity of the three operators
we propose—see the summary in Table 1—and discuss the
implications of this for scalability. Since these are higher-
order operators, we define their complexity in terms of the
complexity of the parameters they take. In the following,
we assume that a transformation F and a property P are
given and their complexity is CF (m) and CP (m), respec-
tively,wherem is the value of ametric over the input signature
measuring the size of the input. For example, if the transfor-
mation F is CDMerge with signature given in Fig. 5, then m
would be the total number of elements in arguments a and b

plus the number of links in r. If F (resp. P) is polymorphic
then we assume that CF (resp. CP) represents the maximum
over the complexities of all its polymorphic variants. We
assume F (resp. P) has vF (resp. vP) polymorphic variants.
Complexity of map [F] The problem of finding bindings for
an input signature is an instance of the subgraph isomorphism
problem and is NP-complete [16]. What makes this tractable
in practice is that the size of the input signature of F is typ-
ically small relative to the size of the megamodel to which
map[F] is being applied. For the algorithm in Fig. 8, the iter-
ation in line 2 over possible bindings of the input signature I
of F can execute up to nk times, where n = Σe∈I |Xe| is the
number of models in all input megamodels and k is the num-
ber of model nodes in I . We assume that there is at most one
relationship of each type between any given set of models in
input megamodels so that a binding is uniquely determined
by the mapping of model nodes in I . If F is commutative and
I has q isomorphisms, the loop can execute (nk)/q times.
Furthermore, in each iteration of the loop, F is called which
has complexity CF (m) and up to vF checks must be made to
find the correct polymorphic variant of F . Since, q and vF
are constants, the complexity is O(nk × CF (m)).

Table 1 Summary of complexity of the three operators

Operator Complexity

map[F]({X}) O(nk × CF (m))

reduce[F](X) O(n2 × CF (m))

filter[P](X) O(nq × CP (m))

Complexity of reduce [F] Similarly to map, line 2 of the
algorithm in Fig. 10 iterates over all possible bindings of the
input signature I , but each time the input models and rela-
tionships are deleted. Thus, each input element participates in
at most one binding. Furthermore, due to the assumption that
F is strictly reducing, each iteration reduces the number of
models and relationships. Thus, the number of iterations (and
applications of F) is bounded by n, the number of models
and relationships in X . The internal loops in lines 4–8 iterate
once for every neighbor of a model M in I and a relationship
of M to a model in O . This can iterate up to r × n times,
where r is the number of relationships between O and I . In
addition, each application of F requires vF checks to get the
correct polymorphic variant. Since r and vF are constants,
the overall complexity is O(n2 × CF (m)).
Complexity of filter[P] For a model property, the algorithm
in Fig. 12 iterates n times. For a relationship property over
a q-ary relationship, it iterates w × nq times, where n is
the number of models in X and w is the number of q-ary
relationship types. Finally, each application of P requires
checking through vP polymorphic variants. Since w and vP
are constants, the complexity is O(nq × CP (m)).
DiscussionThe analysis results in Table 1 show that the oper-
ators scale reasonably well for certain classes of application
scenarios. Specifically, the complexity is at most quadratic
(modulo the transformation/property complexity) in the size
of the input megamodel when map is applied to a trans-
formation with two or fewer input models, in all cases for
reduce, and when filter is applied to either a model property
or to a binary relationship property. Some scenarios exceed
these limits (e.g., the megamodel transformation scenario in
Sect. 4.3). We discuss future work for addressing scalability
in Sect. 10.

6 Tool support

6.1 MMINTOverview

We implemented the megamodel collection operators
described in this paper in the MMINT (Model Management
INTeractive)workbench. Implemented in Java,MMINT 3 uses
the Eclipse Modeling Framework (EMF) [42] to express
models and the Eclipse Graphical Modeling Framework
(GMF) to create custom editors for editing models and
relationships, extending the MMTF model management
framework [36]. The overall architecture ofMMINT is illus-
trated in Fig. 22.

MMINT uses a distinguished type megamodel in which
model types, relationship types and transformations are reg-
istered. Figure 23 shows a screenshot of a portion of the type

3 Available at http://github.com/adisandro/MMINT.

123

http://github.com/adisandro/MMINT

www.manaraa.com

246 R. Salay et al.

Type Megamodel

Megamodel Editor Rela�onship
Editor

Type Support Run�me
(Model, Rela�onship, Transforma�on)

Eclipse
EMF GMF OCL

MMINT

Fig. 22 Architecture of MMINT

megamodel used to implement examples in this paper. Here,
model types are represented as yellow boxes, and relation-
ship types are shown as rounded blue boxes. The subtyping
relationship that implements the type compatibility preorder
(see�TC fromDefinition 3) is shownusing the hollow-headed
arrows between types. Transformations are ovals connected
to their input and output types with named links (names
are not shown to avoid clutter). The transformation signa-
ture information can be extracted directly from this model.
The model also stores additional metadata such as whether
a transformation is commutative or whether a relationship
represents a composition.

In MMINT , a megamodel is referred to as a MID (Model
Interconnection Diagram) and is managed through the MID

editor. The runtime operation ofMMINT is centered around
the MID editor that allows an engineer to interactively cre-
ate models and relationships, invoke transformations on
them and inspect the results. Implementations for support-
ing tools such as type-specific editors, validation checkers,
solvers and custom transformations can be plugged in and
are managed by the type support runtime layer. In addition,
MMINT includes a generic relationship editor which allows
creating sets of links between model elements and editing
them manually after they had been constructed by operators
such as Match. This signature of Match is shown in Fig. 6a.

6.2 Support for polymorphism

MMINT includes support for both the inclusion and the ad
hoc polymorphism as transformation subtyping in the type
megamodel. For example, in Fig. 23, the base transforma-
tion called Rename (from the IT standard change scenario in
Sect. 4.2) takes a Model as input and produces one as output.
Subtypes that take ClassDiagram, Entity Relationship,
StateFlow and StateMachine are polymorphic variants of
Rename. A subtype must have the same signature structure as
its super type but can use more specialized argument types.

At runtime, dynamic dispatch (more specifically, multi-
ple dispatch to take all of the actual parameters into account)
is used to determine the most specific variant (see Defini-
tion 13) when a polymorphic transformation is applied to a
specific set of artifacts. When an engineer manually selects

one or more MID elements and right-clicks to see which
transformations can be applied, the editor shows the most
specific variants of polymorphic transformations as well as
more general variants, giving the engineer the flexibility to
choose which variant to apply. For example, Fig. 24 shows
a screenshot of the user manually applying a transformation
to a selected model cd_01 in the megamodel, and the MID

editor shows that two variants of Rename and two variants of
ToUML can be applied.When collection operators (see below)
are used with a polymorphic transformation, the most spe-
cific variant is applied.

6.3 Implementation of collection operators

InMMINT , all transformations, including higher-order ones,
are registered in the type megamodel. The three collection
megamodel operators in this paper are shown in Fig. 25 with
their inputs and outputs connected to the MID type, indicat-
ing that they take megamodels as input and produce them as
output. In addition, each accepts a parameter shown within
the angle brackets. We show the operator union as an unpa-
rameterized transformation.

MMINT implements the collection operators are imple-
mented as specified in Sect. 3; however, it optimizes the
handling of relationships. Specifically, if map or reduce is
applied using a transformation that has relationships in its
input signature, MMINT first finds bindings for the rela-
tionships and then forces them on the endpoint models. For
example, the CDMerge transformation in Fig. 5 has two mod-
els and one relationship in its input signature. Each binding of
the relationship also binds the models on its endpoints. Thus,
it is sufficient to find all bindings of the relationship to get
all bindings of the input signature. This optimization speeds
up finding bindings when there are fewer relationships than
models in the input signature and this is typically the case.
A similar optimization is used with filter for relationship
properties.

MMINT implements properties as a model or relationship
subtype containing additional well-formedness constraints,
but it does not change the metamodel of its super type. For
example, the NonCompliant type in Fig. 23 is used in the
IT standard change scenario (see Sect. 4.2). It contains the
following OCL code:

NotCompliant (UMLSM):

transitions->exists(

t | t.guard.oclIsUndefined()

)

We implemented the algorithms in Figs. 8, 10 and 12 for
the three operators (andunion) in Java and plugged them into
the type support runtime layer as transformation definitions.
At runtime, when an engineer selects a MID and right-clicks

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 247

Fig. 23 A fragment of the type megamodel inMMINT used for the examples in this paper, showing model types, operators and properties

Fig. 24 Screenshot of megamodel for IT standard change scenario in Sect. 4.2 being built in the MMINT megamodel editor

to seewhat transformations are available to apply, he/she sees
these collection operators and can select one. If the operator is
parameterized, then a second dialog showing the choices for
the parameter appears. For example, Fig. 26 gives a screen-
shot of the IT standard change scenario being built in the
megamodel editor. It depicts the engineer in the final step of
the IT standard change scenario, invoking the reduce oper-
ator.

7 Evaluation: scalability

In this section, we report on experimental results for the scal-
ability of the MMINT implementation of the megamodel
collection operators. Since a collection operator is higher
order and takes a transformation (for map and reduce) or
a property (for filter) as an argument, the time of opera-
tor application is a combination of the collection operator
overhead and the time for transformation/property execu-
tion. In this investigation, we were careful to decouple these
two factors and focus on the collection operator overhead.

123

www.manaraa.com

248 R. Salay et al.

Fig. 25 A fragment of the type megamodel in MMINT showing the
megamodel operators

All three operators function by first finding binding sites for
the transformation/property and then selecting the appropri-
ate polymorphic variant to apply. Thus, we investigate the
following four research questions:

(RQ1) How does the overhead cost vary with the number
of transformation/property binding sites in the input meg-
amodel?

(RQ2) How does the overhead cost vary with the number
of polymorphic variants and with the depth of the polymor-
phic variant hierarchy?

(RQ3) Is the observed performance of the operators con-
sistent with the complexity analysis in Sect. 5?

7.1 Experimental setup

In general, a transformation can have an arbitrary signature
expressed as a megamodel of models and relationships. This
has a systematic blow-up effect on the overhead (as captured
by the complexity analysis in Sect. 5) since for a given meg-
amodel, the larger the input signature, the more binding sites
are possible and have to be checked. To control for this factor,
we limit the input signatures to two kinds: one that takes a

single model and one that takes a single relationship with its
endpoint models. We assume we can extrapolate the experi-
mental results for these cases to more complex signatures.

We use the following artifacts in the experiments:

1. A set PolyModelType0…PolyModelTypen of
model types that inherit from an abstract model type
PolyModelType, and a distinct model type
OtherModelType (referred to as PMT and OMT, respec-
tively).

2. A set SleepM0…SleepMn of polymorphic transforma-
tions with the signature SleepMi (m : PMTi). Each trans-
formation operates by sleeping for a configurable amount
of time and producing no output.

3. A set PolyRelType0…PolyRelTypen of binary rela-
tionship types that inherit from an abstract relationship
type PolyRelType, and a distinct type
OtherRelType (referred to asPRT andORT, respectively).
The PRTi can only havemodels of type PMTi as endpoints,
and ORT can only have models of type OMT as endpoints.

4. A set SleepR0…SleepRn of polymorphic transforma-
tions with the signature SleepRi (m1 : PMTi , m2 : PMTi ,
r(m1, m2) : PRTi (PMTi , PMTi)). Similarly to (2), each of
these sleep for a configurable amount of time and produce
no output.

We control and isolate the time taken by a transforma-
tion by using the SleepM/R transformations set to sleep for a
fixed amount of time. To control the number of transforma-
tion binding sites in a megamodel, recall from Definition 9
that a binding site is a group of models/relationships having
the same shape and types as the input signature of a trans-
formation, while a non-binding site has the same shape but
not the correct types. Thus, to generate a binding site for
SleepM, we use a single PMTmodel and for SleepRwe use a
PRT relationship with its two PMT model endpoints. To gen-

Fig. 26 Screenshot of megamodel for IT standard change in Sect. 4.2 being built in theMMINT megamodel editor

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 249

erate a non-binding site for SleepM, we use an OMT model,
and for SleepR we use an ORT relationship.

For example, we can generate a megamodel containing
100 models, 50 of which are of type OMT, and 5 each of type
PMT0 to PMT9. If we run map[SleepM], it will ignore all of
the models of type OMT, and it will apply the polymorphic
transformation variants SleepM0 to SleepM9 five times each.

We ran the experiments4 on a Debian Sid linux system
with an Intel Core i7-3720QM CPU and 16 GB of RAM.
The relevant software installed includes Eclipse 2018-12 and
OpenJDK 11.

7.2 Results

Figures 27, 28 and 29 show the MMINT overhead to run
each of the megamodel collection operators, when fixing
the number of polymorphic variants to 10. The solid lines
are used for models (i.e., map[SleepM], reduce[SleepM],
filter[PMT]), while the dashed lines are used for relationships
(i.e., map[SleepR], reduce[SleepR], filter[PRT]). On the
horizontal axis,we vary the number of sites in themegamodel
for the Sleep operator (binding + non-binding), from 0 to
1000. On the vertical axis, wemeasure theMMINT overhead
time of running the collection operators (i.e., with the time
taken by the sleep transformation removed). The different
colored lines represent different percentages of binding sites,
from0% to 100%. For example, in Fig. 27, the dashed red line
represents theMMINT overhead for applyingmap[SleepR]
to megamodels with 25% binding and 75% non-binding sites
as the size of the megamodel (i.e., the total number of sites)
increases. We ran the experiments multiple times and show
the mean overhead time. Confidence intervals are computed
using a Student’s t-distribution with a confidence level of
95%.

These graphs address RQ1. Figure 27 for map indicates
that the overhead increases linearly as the size of the input
megamodel grows, and changing the ratio of binding sites
to non-binding sites seems to have negligible effect. The
overhead for SleepR is consistently higher than for SleepM,
which is expected since the binding site for SleepR has two
models and a relationship. However, the increment is by a
constant amount. Note that even for large megamodels with
1000 models, the overhead is still below 1s. This suggests
that the overhead may be a negligible factor when compared
to the time taken for the transformation being applied by
map. For example, a simple transformation Cap that capital-
izes the names of a model’s elements takes 8 s when applied
to 1000 models with 100 elements each.

The results for reduce and filter (Figs. 28, 29) are simi-
lar tomap with some small deviations. Larger megamodels,

4 Detailed instructions to reproduce experiments are available at https://
github.com/adisandro/MMINT/wiki/Publications:-SoSyM19.

Fig. 27 Overhead in MMINT to run map[SleepM] (solid lines) and
map[SleepR] (dashed lines) with 10 polymorphic variants

Fig. 28 Overhead in MMINT to run reduce[SleepM] (solid lines) and
reduce[SleepR] (dashed lines) with 10 polymorphic variants

having more binding sites incurs an increased overhead time
in reduce. The implementation of reduce reuses part of the
infrastructure in place for map, while it could introduce
a number of optimizations tailored to its different looping
requirements. We plan to address this in future work.

Figure 30 addresses RQ2 by showing the impact of the
number of polymorphic variants on the overhead time, when
fixing the number of binding sites to 1000, and non-binding
sites to 0. On the horizontal axis, we vary the number of
variants, from 1 to 30, while the different lines represent the
map, reduce, filter collection operators. As in the previous
graphs, the solid lines are used for models, the dashed lines
are used for relationships, and the vertical axis plots the aver-
age overhead time with same confidence intervals as in the

123

https://github.com/adisandro/MMINT/wiki/Publications:-SoSyM19
https://github.com/adisandro/MMINT/wiki/Publications:-SoSyM19

www.manaraa.com

250 R. Salay et al.

Fig. 29 Overhead in MMINT to run filter[PMT] (solid lines) and
filter[PRT] (dashed lines) with 10 variant types

previous graph. An extra map line has been added to com-
pare the effect of having a deep variant type hierarchy, i.e.,
the one where each PMTi inherits from PMTi−1.

Across all cases, we see a similar pattern where the over-
head jumps to a higher level when more than one variant is
required. This is expected because the polymorphic machin-
ery is invoked only if there is more than one variant. After
the jump, the time increases very gradually (within errormar-
gins) as the number of variants increases.Weonly tested up to
30 variants of a polymorphic transformation, but since each
variant applies to a different model type, having 30 model
types in a single megamodel is a reasonable pragmatic upper
bound. As a comparison, even if each diagram type (e.g.,
sequence diagram, class diagram, etc.) in UML2 was treated
as its own model type, and they all occurred in the same
megamodel, this would produce only 15 model types.

There is a clear increase in overhead times, in order,
for filter, map and reduce. This is expected as these are
increasingly complex operators with correspondingly com-
plex implementations. The increase from filter to reduce is
1000-fold. However, once again, when compared to the time
taken for the transformation being applied, this difference is
not significant. An experiment was also done to compare the
shallow variant hierarchy used in all the experiments (where
all variants inherit from a single base type) and a deep variant
hierarchy where all variants are in single inheritance chain
(red line). This showed a small increase in time as the number
of variants increased. We conclude that the structure of the
inheritance hierarchy is not a significant factor in overhead
time.

We now consider RQ3 and the complexity formulas given
in Table 1. Recall that we are only measuring overhead
in these experiments; thus, the transformation (resp. prop-

Fig. 30 Overhead in MMINT to run collection operators with different
numbers of polymorphic variants

erty) component CF (m) (resp. CP (m)) of the complexity
is ignored. Note that input megamodel size in the complex-
ity formulas is measured in terms of the number of models,
whereas in Figs. 27, 28 and 29 the size is measured as the
number of sites (binding+non-binding). We account for this
below.

First consider the SleepM experiments. Here, the num-
ber of sites is the number of models; thus, the complexity
formulas are directly applicable. For map, since k = 1, the
complexity should be O(n) which is what is observed. For
reduce, the complexity is O(n2), but this is a worst case
bound that assumes that each model is connected to each of
its neighbors (i.e., a fully connected graph). In our exper-
iment, there are no relationships between the PMT models;
thus, we again expect a linear increase. Finally, for filter,
since we are using a model property, q = 1 and this means
the complexity is O(n)which is again linear as we observed.

For the SleepR experiments, the number of sites is the
number of relationships in the input megamodel. The input
megamodels are produced by adding a fixed number r of
relationships to a randomly generated set of up to 2r models.
If we assume that 2r is the number of models, the formula
for map yields O(r2) since k = 2 for SleepR. Despite
this quadratic complexity, we observe a linear time increase
for map. We can assume that this is due to the optimiza-
tion discussed in Sect. 6.3 where finding bindings is driven
by relationships in the input signature. Since there is only
one relationship in SleepR, we would expect a linear time
increase in the number of relationships. A similar argument
applies to reduce and filter.

We conclude that, subject to the experimental design and
MMINT optimizations, the observed results are consistent
with the analytical complexity results.

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 251

8 Evaluation: safety case change impact
assessment case study

In this section, we evaluate the applicability of the collection
operators to implement a model management workflow with
industrial relevance. In safety critical domains, such as auto-
motive, companies are beginning to use an artifact, called
a safety case [22], to present an argument showing that a
developed systemmeets its safety requirements. As a system
changes due to a variety of reasons (e.g., bug fixes, adding
features, etc.), its safety case needs to evolve as well. To sup-
port the safety engineer in this costly and labor-intensive
activity, we have, in other work [25], proposed a change
impact assessment (CIA) model management workflow to
partially automate determining the impact of system model
changes on the safety case and have validated the approach
with our industrial partners [15,24,26]. The CIA workflow
was originally defined without considering the megamodel
collection operators and does not use them.

In this case study, we re-implement the CIA workflow
using megamodel collection operators in order to qualita-
tively assess the usability and effectiveness of the operators
as well as their implementation in MMINT .

8.1 Example: the power sliding door (PSD)

We illustrate the CIA workflow using a simple example of a
power sliding door (PSD) system, presented in Part 10 of the
ISO 26262 functional safety standard [20] for the automotive
domain. PSD is an automotive subsystem that controls the
behavior of a power sliding door in a car. The system has
an Actuator that is triggered on demand by a Driver Switch.
As per the standard, the power sliding door system is con-
sidered an item, with an architecture shown in Fig. 31. The
Driver Switch input is read by a dedicated electronic control
unit (ECU), referred to as AC ECU, which powers the Actu-
ator through a dedicated power line. The vehicle equipped
with the item is also fitted with an ECU, referred to as VS
ECU, which is able to provide the vehicle speed. The sys-
tem includes a safety element, namely a Redundant Switch.
Including this element ensures a higher level of integrity for
the overall system.

As shown in Fig. 31, the VS ECU provides the AC ECU
with the vehicle speed. The AC ECU monitors the driver’s
requests, tests if the vehicle speed is less than or equal to
15km/h, and if so, commands the Actuator. The Redundant
Switch is located on the power line between the AC ECU and
theActuator. It switches on if the speed is less than or equal to
15km/h, and off whenever the speed is greater than 15km/h.
It does this regardless of the state of the power line (its power
supply is independent). The Actuator operates only when it
is powered.

Fig. 31 Power sliding door system with redundancy [20]

Fig. 32 System megamodel for the power sliding door example [26]

The PSD system software design consists of a UML class
diagram, a sequence diagram, analysis models and traceabil-
ity relationships connecting these shown as a megamodel
in Fig. 32. The full details of these models are available
in [25]—we omit them here as they are not relevant for our
purpose.

Accompanying the systemmodels is the safety case for the
PSD system, shown in Fig. 33. It is represented using Goal
Structured Notation (GSN) [17], a commonly used modeling
language for safety cases. A safety argument in GSN is orga-
nized into a tree which includes element types goal (box),
strategy (parallelogram) and solution (circle). The root ele-
ment is the overall goal to be satisfied by the system, and it
is gradually decomposed (possibly via strategies) into sub-
goals and finally into solutions, which are the leaves of the
safety case representing the types of evidence obtained from
analyzing the system. We extend GSN with an additional
notation (small square boxes on the bottom right of the goals)
used to reflect the Automotive Safety Integrity Level (ASIL)
of the goal. The ASIL is a risk classification scheme defined
in the ISO 26262 [20] and is used to indicate the risk asso-
ciated with a goal. The values can be QM, A, B, C or D,
ordered from the lowest to the highest risk.

For example, in Fig. 33, the top level goal G1 is “Avoid
activating the actuator while the vehicle speed is greater than
15km/hr.” This is decomposed into sub-goalsG1.1–G1.4 via
an “AND decomposition” strategy, S1, which means that all
sub-goals need to hold in order for the parent goal to hold.
G1.1 is assigned an ASIL level C (which would have been
determined during the hazard analysis activity) and is linked
to a supporting solution Sn1.1 “Software Verification Report
(9.5.3)—Unit Testing Methods 1a, 1b, 1e” via strategy S1.1.

123

www.manaraa.com

252 R. Salay et al.

Fig. 33 Safety case for power sliding door [15]

8.2 CIA workflow

The CIA workflow assumes that the system is represented
as a heterogeneous megamodel consisting of various mod-
els connected by relationships (e.g., Fig. 32). In addition, it
assumes that there is a traceability relationship between the
safety case and the system model showing what parts of the
system arementioned in each goal. For example, goalG1.2 in
Fig. 33 mentions the system elements VS ECU, Redundant
Switch and the attribute vehicle speed which the traceabil-
ity relationship should map to the corresponding parts of the
class diagram and sequence diagram represented by themeg-
amodel in Fig. 32.

The CIA workflow takes as input a safety case with a
traceability relationship to the system model and the set of
changes in the system model. This version of the CIA work-
flow assumes that changes consist of deleting or modifying

elements.5 The output of the CIA workflow is an annota-
tion of the safety case indicating where and how it may be
impacted by the system changes.

As an example of an application of CIA, Fig 34 shows the
output when the system change consists of the removal of the
redundant switch. At a high level, it shows which parts need
to be revised (due to direct linkage to affected system ele-
ments), rechecked (due to indirect linkage to affected system
elements), or canbe reused (not affectedby the changes). Fig-
ure 34 shows that all safety case elements that refer directly
to the redundant switch must be revised, while any related
elements must be rechecked for their content (and/or state)
validity. Also, by removing the redundancy mechanism, the
ASIL decomposition strategy is no longer valid as per ISO

5 See [25] for issues concerning handling added elements.

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 253

Fig. 34 Result of CIA workflow: annotated safety case for power sliding door due to removing the redundant switch [15]

26262; thus, the ASILs of the corresponding goals must also
be revised.

Conceptually, the CIA workflow consists of the following
steps:

1. Performmodel slicing on the systemmegamodel in order
to identify which other model elements are impacted by
the changes. This is a heterogeneous operation since it
uses different slicers for different types of models; its
own workflow is discussed in Sect. 4.6.

2. Trace the modified system elements across the trace-
ability relationship to identify the safety case elements
requiring revision (i.e., those with content that definitely
need to be modified given the system changes).

3. Trace the impacted system elements from step (1) across
the traceability relationship to identify the safety case
elements that must be rechecked for content validity (i.e.,

the textual content of the element needs to be rechecked
manually in order to validate that it still holds given the
changes).

4. Perform safety case model slicing6 on results of step (2)
in order to get the initial set of safety case elements
that needed to be rechecked for state validity (i.e., the
state of the element (e.g., a goal or solution) needs to be
rechecked as itmay no longer be supported by underlying
sub-goals or evidence).

5. Perform safety case model slicing on the results of steps
(3) and (4) in order to identify the complete set of safety
case elements that must be rechecked for state validity.

6. Perform safety casemodel slicing on the result of step (2)
and merge with the result of step (3) in order to identify
the complete set of safety case elements that must be
rechecked for content validity.

6 See [15] for the set of rules used for safety case slicing.

123

www.manaraa.com

254 R. Salay et al.

7. Annotate the safety case. The results of steps (2), (5) and
(6) are marked for revision, content recheck and state
recheck, respectively.

8.3 CIA workflow implemented with collection
operators

Figure 35 shows the MMINT implementation of the CIA
workflow using the collection operators. It accepts as input
two megamodels and two megarels, namely the system
megamodel (SysMega), the safety case and its traceability
relationship to SysMega (SafetyMega), the set of modified
system elements (SysMod) and the set of deleted system ele-
ments (SysDel). SysMod and SysDel are sub-megamodels
(defined as in Sect. 4.6) of SysMega—i.e., they consist of sub-
models of models in SysMegawhere a submodel is expressed
as a unary relationship. The workflow outputs an annotated
copy of the input safety case (AnnotatedSC), indicating for
each safety case element whether it can be reused, must be
revised or must be rechecked for state or content validity.

The implementation of the CIA workflow consists of 13
megamodel operations, of which 11 utilize map to operate
on themodels and relationships within the inputmegamodels
and megarels. The numbered groupings in Fig. 35 show the
parts of the implementation corresponding to the seven steps
of the workflow described in Sect. 8.2:

1. Apply megamodel slice SliceMMINTA (See Sect. 4.6) on
the modified SysMod and deleted SysDel system ele-
ments to identify the sub-megamodel C1dm of system
elements that may be impacted by the change.

2. Apply map[ModelRelPropagation] to propagate the
deleted system elements SysDel to the safety case across
the traceability relationship.7 ModelRelPropagation

(See the signature in Fig. 36b) propagates the elements of
submodel s1 across relationship r to produce submodel
s2. Thus, the result of map[ModelRelPropagate] here
is a sub-megamodel of SafetyMega containing a sub-
model of the safety case obtained from each submodel in
SysDel. These submodels are then merged into a single
submodel of the safety case usingmap[ModelRelMerge]
(See the signature in Fig. 36c) to produce C2Revise.

3. Apply map[ModelRelPropagation] to propagate sub-
megamodel C1dm to the safety case. This step is similar to
(2), and the result, C2Content1, is a sub-megamodel of
SafetyMega containing a single submodel of the safety
case representing the initial set of safety case elements
to be rechecked for content validity.

7 The transformation SliceCriterionDecorate (See the signature in
Fig. 36a) is first used to add metadata to the deleted elements to support
tooling for queries over the results of CIA. We omit further discussion
of this because it is outside the scope of the conceptual workflow.

4. Slice the safety case elements in C2Revise using map
[GSNSliceRevise2State]. GSNSliceRevise2State

(see Fig. 36d) is a safety case slicing transformation that
takes a submodel of the safety case as input containing
elements that must be revised and expands it to the sub-
model containing all dependent elements that must be
rechecked for state validity. Here, it is used to expand
C2Revise to C2State.

5. Slice C2State and C2Content1 using map
[GSNSliceRecheck] to produce C3State. GSN

SliceRecheck (See Fig. 36e) is another safety case slic-
ing transformation that takes a submodel of the safety
case as input containing elements that needed to be
rechecked and expands it to the submodel containing
all dependent elements that must be rechecked for state
validity.

6. Apply map[GSNSliceRevise2Content] on
C2Revise andmerge the resultswith C2Content1 to pro-
duce C3Content. Like GSNSliceRevise

2State, transformation GSNSliceRevise

2Content (see Fig. 36f) is a safety case slicer that takes a
submodel of revised elements as input, but it expands this
to the set of dependent elements that need to be rechecked
for content validity rather than state validity.

7. Produce the annotated safety case AnnotatedSC by
applying GSNAnnotate on C2Revise, C3Content and
C3State. GSNAnnotate (see Fig. 36g) creates a copy
of the original safety case with each element annotated
according to its presence in each of the three meg-
amodel relations. For example, if an element is present
in C2Revise, it is marked for revision, etc.

8.4 Discussion

We make several observations from the exercise of imple-
menting the CIA workflow.

We first note that the collection operators were sufficient
to implement the workflow despite its complexity. Further-
more, the use of collection operators allowed a near direct
translation of the conceptual workflow in Sect. 8.2 to the
implementation workflow (apart from the need for using
the ModelRelMerge helper transformation discussed below).
Interestingly, map was the only collection operator needed.
Its usefulness likely follows from the fact that it implements
a basic iteration control flow construct over megamodels—a
(stateless) for-loop. Both reduce and filter are also looping
constructs, but their more specialized semantics are applica-
ble only in special situations that did not arise in the CIA
workflow.

A noticeable characteristic of the workflow is the repeated
use of map[ModelRelMerge]. ModelRelMerge merges two
submodels of the same model into a single submodel. The
CIA workflow repeatedly generates information from mul-

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 255

Fig. 35 MMINT workflow for assessing impact of system changes on a GSN safety case

tiple sources and applies it to the same model (e.g., the
safety case). This information needs to be merged. Steps
(1), (5) and (6) use map[ModelRelMerge] with two input
arguments because this operation merges the content of
two submodels, each of which are in different megamod-
els. In contrast, steps (2) and (3) usemap[ModelRelMerge]
with a single input argument (i.e., taking both arguments
of ModelRelMerge from the same input megamodel) since
the output ofmap[ModelRelPropagate] produces onemeg-
amodel containing multiple submodels of the safety case.
These cases show the importance of the map feature that
allows the input arguments of the mapped transformation to
be allocated to input megamodels in different ways.

A drawback of using collection operators is that they may
obscure the design intent the workflow. For example, it is
impossible to deduce that C2Revise should only contain a
single safety case submodel without prior knowledge of the
semantics of GSNSliceRevise2State. Another problem is
that staying at the megamodel level may limit the possibil-
ity of performing static analyses on the workflow since the
models are “buried” in megamodels. Unless operators such
as GSNAnnotate are used to convert megamodels into mod-

els which can then be analyzed, the onus is completely on
the user to detect and diagnose unexpected results.

Finally, the fact that in Fig. 35 we had to parse the work-
flow into seven steps by superimposing numbered boxes onto
it seems to suggest that some hierarchical decomposition
mechanism is needed inMMINT to help manage complexity
in large workflows. However, this issue is orthogonal to the
functionality of collection operators since it would apply to
any model management workflow.

9 Related work

Megamodel management Many model management
approaches have been proposed. For example, Rondo [34]
represents models as directed labeled graphs and supports
traditional model management operations (e.g., match and
merge) that work directly on models but not on the meg-
amodels containing them.Maudeling8 offers advanced query

8 Maudeling: http://atenea.lcc.uma.es/index.php/Main_Page/
Resources/Maudeling.

123

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling

www.manaraa.com

256 R. Salay et al.

m1:Model m2:Model

ModelRelPropaga�on

sc:SafetyCase

GSNSliceRevise2State

(b)

(d)

(e) (f)

m2:Megarel sc:SafetyCaseGSNAnnotate

m1:Megarel

m3:Megarel

(g)

s1:Sub

r:Rel

s2:Sub

s1:Sub s2:Sub

sc:SafetyCase

GSNSliceRecheck

s1:Sub s2:Sub sc:SafetyCase

GSNSliceRevise2Content

s1:Sub s2:Sub

(a)

(c)

m:Model

SliceCriterionDecorate

s1:Sub s2:Sub

m:Model

ModelRelMerge

s1:Sub s3:Sub

s2:Sub

Fig. 36 Signatures of operators required in the change impact assessment workflow: a SliceCriterionDecorate; b ModelRelPropagation; c
ModelRelMerge; d GSNSliceRevise2State; e GSNSliceRecheck; f GSNSliceRevise2Content; and g GSNAnnotate

services; however, these are on the modeling artifacts them-
selves and not on megamodels. Epsilon [27] provides a set of
domain specific languages for specific model management
operations such as match and merge; however, no special
support is provided for megamodels.

The Atlas Model Management Architecture (AMMA) [2]
has a component AM3 [21] for expressing megamodels
and an OCL-based scripting language MoScript for gen-
eral model management scripts including limited support
for megamodel manipulation. Specifically, MoScript [23]
provides support formapbyusing theOCLApplyTo andCol-
lect operations and support for filter using the OCL Select
operation; however, these versions of map and reduce are

more limited than what we propose because MoScript does
not treat relationships between models as first class citizens
and the support for map and reduce is limited to sets of
models rather than graph-like collections in megamodels. In
addition, MoScript does not provide support for the reduce
operation. Other MDEworkflow languages such UniTI [45],
and TraCo [19] can also be used to manipulate megamod-
els. These languages are more general purpose and do not
have the megamodel-specific abstractions that we focus on.
More recently, the megamodeling language MegaL [14] has
been proposed for editing megamodels graphically. But the
focus of this work is on the megamodeling language itself
rather than on its use for model management. We see MDE

123

www.manaraa.com

Heterogeneous megamodel management using collection operators 257

workflow languages such as MoScript, UniTI and TraCo as
complementary to our approach and believe they can benefit
from incorporating our megamodel manipulation operations
into the language.

Model search engines such as MOOGLE [33] and Inc-
Query [44] perform queries of model contents. Our filter
operation does not limit which languages or engines can be
used for defining model and relationship properties. Thus,
model search engines are complementary to our approach.
Collection operators Graph-based languages and frame-
works that provide collection-based operations on graphs
have been proposed. The map and fold (i.e., reduce) algo-
rithms in [12] generalize the classic list-based versions of
these to graphs, but the assumptions made by these algo-
rithms make them inapplicable to the megamodel case.
Specifically, the map algorithm does not allow for a “graph”
of input arguments to the transformation as map does with
transformation input signatures, and the fold algorithm only
aggregates values on nodes and edges rather than collapsing
the graph structure itself as reduce does. The MapReduce
approaches of Google and others [6] are intended for the
efficient processing of big data; yet, these operate differently
from the map and reduce functions found in many program-
ming languages [29].
Model heterogeneity Several approaches [8,10,11,28,40,43]
for addressing the problemof consistency checking andman-
agement among heterogeneous models have been proposed.
The work in [8,9,28] treats the collection of heterogeneous
models (multimodels) as a graph and considers a categori-
cal approach to formalize the overlaps between them. The
work in [11] addresses the same problem by organizing
the different partial models as a network of related models,
which provides a global view of the heterogeneous sys-
tem through a correspondence model. As changes occur and
inconsistency emerges, a semi-automatic process based on
the correspondence model allows detecting changes, calcu-
lating their impacts, and proposingmodifications tomaintain
the consistency among them. The thesis in [40] focuses on
describing, modeling and verifying inter-model constraints
and relationships between preexisting heterogeneous mod-
els used in a system engineering process. Finally, in [43],
a formalization of software development build processes is
used to enable consistency management between collections
of heterogeneous models represented using a megamodel.
While all these approaches deal with heterogeneous model
management, they focus on the specific subproblem of con-
sistency management. In contrast, our collection operators
are generic building blocks for implementing arbitrary het-
erogeneous model management tasks.
Model typing and polymorphism Model typing plays an
important role in our work. It has been studied from differ-
ent perspectives. A formal type system cGMM [46] has been
integrated with AM3 megamodels discussed above to pro-

vide support for type checking and type inference. However,
there is no discussion of polymorphism in that work.

To the best of our knowledge, there are no works
addressing ad hoc polymorphism for models; however,
various approaches to universal polymorphism have been
proposed as a way of supporting transformation reuse.
Model subtyping techniques (e.g., [18,41]) establish rules
for subtyping relationships between metamodels that can
be applied automatically to judge whether a transformation
expressed over one metamodel can be executed over another
metamodel. Model concepts and related techniques [32,35]
require that developers wanting to reuse a model transforma-
tion provide an explicit, and potentially complex, mapping
between the two metamodels. This is more powerful than
subtyping because the mapping can allow for richer rela-
tionships between metamodels. Other approaches [31,47]
use constraints to express minimal typing requirements on
the input/output model types of a transformation. Other
input/output types that satisfy the requirements can also be
safely used with the transformation.

In our work, the type compatibility relation is the abstrac-
tion that allows universal polymorphism (via inclusion poly-
morphism). Thus, any of the subtyping approaches in the
literature can be used as the type compatibility relationship.
Currently, we do not support the additional metadata (e.g.,
mappings) required by themore powerful universal polymor-
phism approaches described above and consider this future
work.

10 Conclusion and future work

In this paper, we have proposed three newmegamodel collec-
tion operators: map, reduce and filter. These operators are
inspired by similar collection manipulation operators found
in many programming languages, but are adapted to address
the special characteristics of megamodels andMDE environ-
ments. Specifically, the operators treat model relationships as
first class entities and address the graph-like structure ofmeg-
amodels and of the signatures for model transformations. To
address the application of these operators to heterogeneous
megamodels, they are designed to work with polymorphic
transformations and properties. Both inclusion and ad hoc
polymorphism are supported.

Our future work will explore several issues. First, we
plan to extend our operators to take hierarchical struc-
ture of megamodels into account. The current operators are
shallow—i.e., they do not penetrate into referenced meg-
amodels; however, complexities arisewith deep versions. For
example, in a deep version of map when there is more than
one input megamodel and they have different hierarchical
structures, it is not clearwhat hierarchical structure the output
should have. Second, since the combinatorial nature ofmap

123

www.manaraa.com

258 R. Salay et al.

limits its scalability, we intend to investigate ways to miti-
gate this problem. For example, it may be possible to adapt
the highly parallelizableMapReduce framework used in big
data scenarios.Wewant to add optimizations tomake reduce
more scalable as well. Third, we plan to extend our approach
to address a more general formulation of polymorphism
where the polymorphic variants can extend the signaturewith
new elements. That is, we will relax the requirement that the
alignmentmappingbebijective and require it to only be injec-
tive. In addition, we will investigate supporting the richer
forms of universal polymorphism that have been presented
in the literature. Fourth, we plan to experimentally evaluate
how more complex signatures affect the overhead time of
the collection operators. Finally, we want to further validate
the usefulness of the collection operators by doing more case
studies both in software development and beyond. Although
in this paper we have taken our motivation from the software
domain, there is nothing about the collection operators that
limits their use to software models. We have hinted at this
in Sect. 8 where we included GSN models in the case study.
Our overall objective in all these investigations is to produce
a set of scalable megamodel manipulation operators that are
needed in heterogeneous model management scenarios.

Acknowledgements This work is funded by NSERC in collaboration
with General Motors.

References

1. Bernstein, P.A.: Applying model management to classical meta
data problems. In: Proceedings of CIDR’03, vol. 2003, pp. 209–
220 (2003)

2. Bézivin, J., Jouault, F., Touzet, D.: An introduction to the atlas
model management architecture. Tech. Rep. 05.01, Labratoire
d’Informatique de Nantes-Atlantique (2005)

3. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamodels.
In: Proceedings of OOPSLA/GPCE Workshops (2004)

4. Brunet, G., Chechik,M., Easterbrook, S., Nejati, S., Niu, N., Sabet-
zadeh, M.: A manifesto for model merging. In: Proceedings of
GAMMA at ICSE’06, pp. 5–12 (2006)

5. Cardelli, L., Wegner, P.: On understanding types, data abstraction,
and polymorphism. ACM Comput. Surv. (CSUR) 17(4), 471–523
(1985)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008)

7. Diskin, Z., Kokaly, S., Maibaum, T.: Mapping-aware megamod-
eling: design patterns and laws. In: Proceedings of SLE’13, pp.
322–343 (2013)

8. Diskin, Z., König, H.: Incremental consistency checking of hetero-
geneous multimodels. In: Proceedings of STAF’16Workshops, pp.
274–288. Springer (2016)

9. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of hetero-
geneous models for global consistency checking. In: Proceedings
of MDI@MODELS’10, pp. 42–51. ACM (2010)

10. El Hadji Bassirou Toure, B., Fall, I., Bah, A., Camara, M.S.: Meg-
amodel consistency management at runtime. In: Proceedings of
CNRIA’17, vol. 204, p. 257. Springer (2018)

11. El Hamlaoui, M., Ebersold, S., Coulette, B., Nassar, M., Anwar,
A.: Heterogeneous model matching for consistency management.
In: Proceedings of RCIS’14, pp. 1–12. IEEE (2014)

12. Erwig, M.: Functional programming with graphs. ACMSIGPLAN
Not. 32(8), 52–65 (1997)

13. Favre, J.M., Lämmel, R., Varanovich, A.: Modeling the Linguistic
Architecture of Software Products. Springer, Berlin (2012)

14. Favre, J.M., Lämmel, R., Varanovich, A.: Modeling the linguistic
architecture of software products. In: Proceedings ofMoDELS’12,
pp. 151–167 (2012)

15. Fung, N.L., Kokaly, S., Di Sandro, A., Salay, R., Chechik, M.:
MMINT-A: a tool for automated change impact assessment on
assurance cases. In: Proceedings of ASSURE@SAFECOMP’18,
pp. 60–70. Springer (2018)

16. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 29.
WH freeman, New York (2002)

17. GSN: Goal Structuring Notation Working Group. GSN Commu-
nity Standard Version 1. http://www.goalstructuringnotation.info/
(2011)

18. Guy, C., Combemale, B., Derrien, S., Steel, J.R., Jézéquel, J.M.:
On model subtyping. In: Proceedings of ECMFA’12, pp. 400–415
(2012)

19. Heidenreich, F., Kopcsek, J., Aßmann, U.: Safe composition of
transformations. J. Obj. Technol. 7(10) (2011)

20. ISO: ISO 26262: Road Vehicles—Functional Safety. International
Organization for Standardization (2011). 1st version

21. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y.,
Bézivin, J.: Inter-DSL coordination support by combining meg-
amodeling and model weaving. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 2011–2018. ACM (2010)

22. Kelly, T.,Weaver, R.: The goal structuring notation—a safety argu-
ment notation. In: Proceedings of DSN’04 (2004)

23. Kling, W., Jouault, F., Wagelaar, D., Brambilla, M., Cabot, J.:
MoScript: A DSL for querying and manipulating model reposi-
tories. In: Proceedings of SLE’12, pp. 180–200. Springer (2012)

24. Kokaly, S.: Managing assurance cases in model based software
systems. Ph.D. thesis, McMaster University (2019)

25. Kokaly, S., Salay, R., Cassano, V., Maibaum, T., Chechik, M.:
A model management approach for assurance case reuse due to
system evolution. In: Proceedings of MODELS’16, pp. 196–206.
ACM (2016)

26. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.:
Safety case impact assessment in automotive software systems:
an improved model-based approach. In: Proceedings of SAFE-
COMP’17, pp. 69–85. Springer (2017)

27. Kolovos, D.S., Rose, L.M., Garcia-Dominguez, A., Paige, R.F.:
The Epsilon Book. Eclipse, Cairo (2015)

28. König, H., Diskin, Z.: Advanced local checking of global con-
sistency in heterogeneous multimodeling. In: Proceedings of
ECMFA’16, pp. 19–35. Springer (2016)

29. Lämmel, R.: Google’s mapreduce programmingmodel—revisited.
Sci. Comput. Program. 70(1), 1–30 (2008)

30. Lano, K., Rahimi, S.K.: Slicing of UML models. In: Proceedings
of ICSOFT’10 Vol. 2, pp. 259–262 (2010)

31. de Lara, J., Di Rocco, J., Di Ruscio, D., Guerra, E., Iovino, L.,
Pierantonio, A., Cuadrado, J.S.: Reusing model transformations
through typing requirements models. In: International Conference
on Fundamental Approaches to Software Engineering, pp. 264–
282. Springer, Berlin (2017)

32. de Lara, J., Guerra, E.: From types to type requirements: genericity
for model-driven engineering. SoSyM 12(3), 453–474 (2013)

33. Lucrédio, D., Fortes, R.P.d.M., Whittle, J.: MOOGLE: A model
search engine. In: Proceedings of MoDELS’08, pp. 296–310
(2008)

123

http://www.goalstructuringnotation.info/

www.manaraa.com

Heterogeneous megamodel management using collection operators 259

34. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming
platform for generic model management. In: Proceedings of SIG-
MOD’03, pp. 193–204. ACM (2003)

35. Rose, L., Guerra, E., de Lara, J., Etien, A., Kolovos, D., Paige, R.:
Genericity for model management operations. SoSyM (2011)

36. Salay, R., Chechik,M., Easterbrook, S., Diskin, Z.,McCormick, P.,
Nejati, S., Sabetzadeh, M., Viriyakattiyaporn, P.: An eclipse-based
tool framework for software model management. In: Proceedings
of Eclipse Workshop @ OOPSLA’07, pp. 55–59 (2007)

37. Salay, R., Kokaly, S., Chechik, M., Maibaum, T.: Heteroge-
neous megamodel slicing for model evolution. In: Proceedings of
ME@MoDELS’16, pp. 50–59 (2016)

38. Salay, R., Kokaly, S., Di Sandro, A., Chechik, M.: Enriching
megamodel management with collection-based operators. In: Pro-
ceedings of MoDELS’15, pp. 236–245 (2015)

39. Salay, R., Mylopoulos, J., Easterbrook, S.: Using macromodels to
manage collections of relatedmodels. In: Proceedings ofCaiSE’09,
pp. 141–155. Springer (2009)

40. Simon-Zayas, D.: A framework for the management of heteroge-
neous models in systems engineering. Ph.D. thesis, ISAE-ENSMA
Ecole Nationale Supérieure de Mécanique et d’Aérotechique-
Poitiers (2012)

41. Steel, J., Jézéquel, J.M.: On model typing. SoSyM 6(4), 401–413
(2007)

42. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework. Pearson Education, London (2008)

43. Stevens, P.: Towards sound, optimal, and flexible building from
megamodels. In: Proceedings of the 21th ACM/IEEE International
Conference onModelDrivenEngineeringLanguages andSystems,
pp. 301–311. ACM (2018)

44. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B.,
Ráth, I., Szatmári, Z., Varró, D.: EMF-IncQuery: an integrated
development environment for live model queries. Sci. Comput.
Program. 98, 80–99 (2015)

45. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.:
Uniti: A unified transformation infrastructure. In: Proceedings of
MODELS’07, pp. 31–45. Springer (2007)

46. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing
artifacts in megamodeling. J. Softw. Syst. Model. 12(1), 105–119
(2013)

47. Zschaler, S.: Towards constraint-based model types: A generalised
formal foundation for model genericity. In: Proceedings of the 2nd
workshop on view-based, aspect-oriented and orthographic soft-
ware modelling, p. 11. ACM (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dr. Rick Salay is a researcher in
software modeling with over 40
peer-reviewed papers in the area.
He has conducted and led inter-
nationally recognized research in
modeling on topics including
safety assurance modeling, model
management, model uncertainty
and model transformations. He
played a senior role in NECSIS,
a five year 10.5 million pan-
Canadian research network with
industrial partners General Motors
and IBM, focused on improving
Model Driven Engineering (MDE)

practice. Currently he plays senior roles in projects related to the
safety of automated driving systems and machine learning. He reg-
ularly participates in program committees for international confer-
ences related to software engineering, modeling and safety. Prior to his
research career, he had a 15 year career in advanced software prod-
uct development holding senior software design roles, most recently
as chief architect at InSystems Technologies Inc. (now Oracle).

Dr. Sahar Kokaly is a Research
Associate in the Department of
Computer Science at the Univer-
sity of Toronto. She is also a
part-time Researcher at General
Motors, working with the R&D
group on collaborative projects
with academia in the areas of
safety, model-based engineering
and feature modeling. Sahar com-
pleted her Ph.D. in Software Engi-
neering in 2019 from McMaster
University. Prior to that, Sahar
worked as a Research Engineer
on the NECSIS (Network for the

Engineering of Complex Software Intensive Systems) project in
Canada, and as an IT specialist at IBM Canada. She has been involved
in organizing numerous workshops (e.g., MiSE at ICSE, AMT and
MPM at MODELS), served on MODELS conference organizing com-
mittees (MODELS 2015, 2017, 2018) and was an invited panelist at
MODELS 2016. Sahar regularly acts as a program committee mem-
ber on workshops, most recently MiSE 2019 and SASSUR 2019, and
as a reviewer for journals including Journal of Systems and Software,
Empirical Software Engineering Journal, Software & Systems Model-
ing Journal and IEEE Software. Sahar’s main research interests are in
safety assurance, model-driven engineering and improving the state-
of-the art in software development in industry through automation and
reuse.

123

www.manaraa.com

260 R. Salay et al.

Alessio Di Sandro is a Software
Engineer based in Pisa, Italy. He
received his degree (with honors)
in Computer Engineering from the
University of Pisa in 2009, work-
ing for Ericsson Research in Stock-
holm, Sweden, as part of his Mas-
ter’s thesis. He has been a
researcher at CNR-ISTI in Pisa,
Italy, and at the University of
Toronto, Canada. His research
interests include topics from
Model-Driven Engineering and
Visual Technologies, such as model
management, model validation, auto-

mated code generation, design of graphical interfaces and web tech-
nologies.

Nick L. S. Fung is a research
assistant in the Software Engi-
neering group at the University of
Toronto, wherein he also obtained
a Master’s degree in Computer
Science. His research interests
revolve around model-driven engi-
neering, with a special focus on
the tools and techniques for design-
ing and developing safety crit-
ical systems. Particular applica-
tion domains for his research are
healthcare and automotive.

Marsha Chechik is Professor in the
Department of Computer Science
at the University of Toronto. She
received her Ph.D. from the Uni-
versity of Maryland in 1996. Prof.
Chechik’s research interests are in
the application of formal meth-
ods to improve the quality of soft-
ware. She has authored numerous
papers in formal methods, soft-
ware specification and verification,
computer safety and security and
requirements engineering. In 2002–
2003, Prof. Chechik was a visit-
ing scientist at Lucent Technolo-

gies in Murray Hill, NY and at Imperial College, London UK, and in
2013—at Stonybrook University. She is a member of IFIP WG 2.9 on
Requirements Engineering and an Associate Editor in Chief of Journal
on Software and Systems Modeling. She is has been an associate edi-
tor of IEEE Transactions on Software Engineering 2003–2007, 2010–
2013. She regularly serves on program committees of international
conferences in the areas of software engineering and automated ver-
ification. Marsha Chechik has been Program Committee Co-Chair of
the 2018 International Conference in Software Engineering (ICSE18),
2016 International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’16), the 2016 Working
Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE16), the 2014 International Conference on Automated Soft-
ware Engineering (ASE’14), the 2008 International Conference on
Concurrency Theory (CONCUR’08), the 2008 International Confer-
ence on Computer Science and Software Engineering (CASCON’08),
and the 2009 International Conference on Formal Aspects of Software
Engineering (FASE’09). She will be PC Co-Chair of ESEC/FSE’2021.
She is a Member of ACM SIGSOFT and the IEEE Computer Society.

123

www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Heterogeneous megamodel management using collection operators
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic types
	2.2 Mega artifacts
	2.3 Properties and transformations
	2.4 Polymorphism
	2.5 Traditional megamodeling operators

	3 Megamodel collection operators
	3.1 Operator map
	3.2 Operator reduce
	3.3 Operator filter

	4 Application scenarios
	4.1 Scenario: experiment driver
	4.2 Scenario: IT standard change
	4.3 Scenario: megamodel transformation
	4.4 Scenario: mass refactoring
	4.5 Scenario: undesirable property removal
	4.6 Scenario: megamodel slicing
	4.7 Summary

	5 Analysis
	6 Tool support
	6.1 MMINT Overview
	6.2 Support for polymorphism
	6.3 Implementation of collection operators

	7 Evaluation: scalability
	7.1 Experimental setup
	7.2 Results

	8 Evaluation: safety case change impact assessment case study
	8.1 Example: the power sliding door (PSD)
	8.2 CIA workflow
	8.3 CIA workflow implemented with collection operators
	8.4 Discussion

	9 Related work
	10 Conclusion and future work
	Acknowledgements
	References

